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Abstract. This paper presents an XFEM implementation of a projection algorithm to
compute in an Eulerian framework 3D incompressible two-fluid flows with arbitrary
high contrasts in material properties. It is designed to deal with both strong and weak
discontinuities across the interface for pressure and velocity fields, respectively. A clas-
sical enrichment function accounts for velocity gradient discontinuities across the in-
terface and a new quadratic enrichment function accounts for pressure discontinuities
across the interface. A splitting of two-fluid elements is performed to achieve accurate
numerical integrations, meanwhile a scaling coefficient accounting for both physical
and geometrical considerations alleviates ill-conditioning. Various validations have
been carried and very good solution accuracy is achieved even on coarse meshes, as
from the minimal mesh not conforming to the interface. This implementation enables
to compute accurate solutions regardless of discontinuity magnitude (arbitrary high
contrast in material properties) and mesh size of two-fluid elements, which can consti-
tute a decisive advantage for large size 3D computations.
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1 Introduction

Two-fluid flows involve two non-miscible fluids, which are therefore separated by a
sharp interface, whose location is usually part of the problem unknowns to be deter-
mined. They take place in a large collection of fluid mechanics problems ranging from en-
vironmental and geophysical to industrial processing situations. Many numerical meth-
ods have been developed to deal with such problems, but their accuracy and computa-
tional efficiency mainly depend on their capabilities to deal with two key-points: i) the
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topological complexity of the interface(s) and its (their) potential changes in the course of
time; ii) the material discontinuities across the interface(s) and their related velocity and
pressure field discontinuities.

Among many others, the Extended Finite Element Method (XFEM) is well suited to
account for material discontinuities in an Eulerian framework. Indeed, it has emerged
from Element-Free Galerkin Methods and inherited many of their techniques [1]. It is
designed to approximate discontinuous fields by supplementing the classical continuous
polynomial approximations with extra discontinuous ones related to the known physical
discontinuities. Four main features are meaningful to the computational efficiency of an
XFEM implementation: (i) the interface representation, (ii) the chosen enrichment func-
tions for strong and weak discontinuities, (iii) the numerical integration of weak integral
forms in elements crossed by the interface and (iv) the way to reduce ill-conditioning that
arises from localized tiny supports of enrichment functions.

In the framework of two-fluid flows, the pioneering work of Chessa and Belytsch-
ko [2] acknowledged the Level Set Method [3–5] to be a very convenient way to repre-
sent the interface geometry in XFEM, whatever it is steady or time-dependent. Based on
this statement most enrichment functions are nowadays based on the Level Set function,
defined as the signed distance to the interface [2]. Optimal convergence rates have been
reported for strong pressure discontinuity problems (related to surface tension) with the
sign enrichment function [6], meanwhile only sub-optimal convergence rates are experi-
enced for continuous fields with discontinuous gradients (related to different densities
and/or dynamical viscosities) with the abs enrichment function [7, 8]. The cure for the
latter was to supplement blending elements (that have both enriched and non-enriched
nodes) with a smoothed ridge enrichment function [7] or a linearly decreasing weight
function [9], so that their enrichment functions are shifted to vanish at edge nodes [10,11].
As an Eulerian approach the mesh does not coincide with the interface, so discontinuities
in material properties lead to discontinuous integrands in crossed elements and Gauss
quadratures no longer produce accurate results. To overcome this problem one splits
crossed elements into homogeneous sub-domains on each side of the interface, so that
integrands remain piecewise continuous [6]. In three dimensional problems such split-
tings are sometimes computationally cumbersome and tricky, resulting in either two-
stage procedures [6,12] or one-stage ones [13]. Such a splitting strategy into sub-domains
with curved, higher-order edges [14] or faces [15] has recently pushed a step forward en-
abling to perform accurate numerical integrations with reduced numbers of quadrature
points.

A recurrent XFEM issue is the potentially devastating ill-conditioning that arises in
algebraic systems resulting from cut elements with large ratios of volumes on both sides
of the interface [12]. Such ill-conditioning not only critically degrades the convergence
rate of iterative solvers, but can also in extreme cases lead to completely erroneous results
even with direct solvers. Several cures have been proposed, either changing the enrich-
ment function itself [16] or its nodal support, discarding enriched degrees of freedom as-
sociated with too tiny supports [17] or moving them to recover a better condition number


