
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2016-0136

Vol. 21, No. 3, pp. 650-678
March 2017

Fast Evaluation of the Caputo Fractional Derivative

and its Applications to Fractional Diffusion Equations

Shidong Jiang1, Jiwei Zhang2,∗, Qian Zhang2 and Zhimin Zhang2,3

1 Department of Mathematical Sciences, New Jersey Institute of Technology, Newark,
NJ 07102, USA.
2 Beijing Computational Science Research Center, Beijing 100093, China.
3 Department of Mathematics, Wayne State University, Detroit, MI 48202, USA.

Communicated by Tao Zhou

Received 19 August 2016; Accepted (in revised version) 23 November 2016

Abstract. The computational work and storage of numerically solving the time frac-
tional PDEs are generally huge for the traditional direct methods since they require
total O(NSNT) memory and O(NSN2

T) work, where NT and NS represent the total
number of time steps and grid points in space, respectively. To overcome this difficulty,
we present an efficient algorithm for the evaluation of the Caputo fractional derivative
C
0 Dα

t f (t) of order α∈ (0,1). The algorithm is based on an efficient sum-of-exponentials

(SOE) approximation for the kernel t−1−α on the interval [∆t,T] with a uniform abso-
lute error ε. We give the theoretical analysis to show that the number of exponentials

Nexp needed is of order O(logNT) for T≫1 or O(log2 NT) for T≈1 for fixed accuracy
ε. The resulting algorithm requires only O(NSNexp) storage and O(NSNT Nexp) work
when numerically solving the time fractional PDEs. Furthermore, we also give the sta-
bility and error analysis of the new scheme, and present several numerical examples
to demonstrate the performance of our scheme.
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1 Introduction

Over the last few decades the fractional calculus has received much attention of both
physical scientists and mathematicians since they can faithfully capture the dynamics of
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physical process in many applied sciences including biology, ecology, and control system.
The anomalous diffusion, also referred to as the non-Gaussian process, has been observed
and validated in many phenomena with accurate physical measurement [19,28,29,46,48,
51]. The mathematical and numerical analysis of the factional calculus became a subject
of intensive investigations.

In this paper, we consider a fast evaluation of the following fractional partial differ-
ential equation:

C
0 Dα

t u(x,t)=∆u(x,t)+F(u,x,t), 0<α<1, (1.1)

where the Caputo fractional derivative C
0 Dα

t u(x,t) is defined by the formula

C
0 Dα

t u(x,t)=
1

Γ(m−α)

∫ t

0

u(m)(x,τ)

(t−τ)α+1−m
dτ, m−1<α<m, m∈Z. (1.2)

The existing schemes for solving (1.1) require the storage of the solution at all previous
time steps and the computational complexity of these schemes is O(N2

T NS) with NT the
total number of time steps and NS the number of grid points in space. This is in dark
contrast with the usual diffusion equations where one only needs to store the solution at
a fixed number of time steps and the computational complexity is linear with respect to
NT.

It is easy to see that the difficulty is caused by the Caputo factional derivative ap-
peared in (1.1). Indeed, one of the popular schemes of discretizing the Caputo fractional
derivative is the so-called L1 approximation [15, 16, 23, 30, 32, 36, 39–41, 52], which is sim-
ply based on the piecewise linear interpolation of u on each subinterval. For 0<α<1, the
order of accuracy of the L1 approximation is 2−α. There are also high-order discretiza-
tion schemes by using piecewise high-order polynomial interpolation of u [10, 17, 33, 47]
and [9, 34, 37]. For each spatial point x, these methods require the storage of all previous
function values u(0),u(t1),··· ,u(tn) and O(n) flops at the nth step. Thus it requires on
average O(NT) storage and the total computational cost is O(N2

T), which forms a bot-
tleneck for long time simulations, especially when one tries to solve the time fractional
partial differential equations (PDEs).

Here we present an efficient scheme for solving the fractional PDEs (1.1). Our key ob-
servation is that the Caputo derivative can be evaluated almost as efficient as the usually
derivatives (besides some logarithmic factors). We first split the convolution integral in
(1.2) into two parts - a local part containing the integral from t−∆t to t, and a history part
containing the integral from 0 to t−∆t. The local part is approximated using the stan-
dard L1 approximation. For the history part, integration by parts leads to a convolution
integral of u with the kernel t−1−α. We show that t−1−α (0 < α < 1) admits an efficient
sum-of-exponentials (SOE) approximation on the interval [δ,T] with δ = ∆t, a uniform
absolute error ε and the number of exponentials needed is of the order

Nexp =O
(

log
1

ε

(

loglog
1

ε
+log

T

δ

)

+log
1

δ

(

loglog
1

ε
+log

1

δ

))

. (1.3)


