
Commun. Comput. Phys.
doi: 10.4208/cicp.011214.140715a

Vol. 19, No. 3, pp. 733-757
March 2016

A Second-Order Finite Difference Method for

Two-Dimensional Fractional Percolation Equations

Boling Guo1, Qiang Xu1,2,∗ and Ailing Zhu2

1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
2 School of Mathematical Sciences, Shandong Normal University, Jinan 250014,
China.

Received 1 December 2014; Accepted (in revised version) 14 July 2015

Abstract. A finite difference method which is second-order accurate in time and in
space is proposed for two-dimensional fractional percolation equations. Using the
Fourier transform, a general approximation for the mixed fractional derivatives is an-
alyzed. An approach based on the classical Crank-Nicolson scheme combined with
the Richardson extrapolation is used to obtain temporally and spatially second-order
accurate numerical estimates. Consistency, stability and convergence of the method
are established. Numerical experiments illustrating the effectiveness of the theoretical
analysis are provided.
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1 Introduction

In this paper, we are concerned with the development of finite difference methods for the
two-dimensional fractional percolation problem which seeks unknown pressure function
p(x,y,t) satisfying

∂p

∂t
=

∂β1

∂xβ1

(

kx(x,y)
∂α1 p

∂xα1

)

+
∂β2

∂yβ2

(

ky(x,y)
∂α2 p

∂yα2

)

+ f (x,y,t), (x,y)∈Ω, 0< t≤T,

(1.1)

p(x,y,0)= p0(x,y), (x,y)∈Ω, (1.2)

p(xL,y,t)= p(x,yL ,t)=0, (1.3)

p(xR,y,t)=vx(y,t), p(x,yR,t)=vy(x,t), (x,y)∈Ω, 0≤ t≤T,
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where Ω={(x,y)|xL≤x≤xR,yL≤y≤yR},0<α1,α2<1,0<β1,β2≤1, f (x,y,t) is the source
term, positive kx(x,y) and ky(x,y) are percolation coefficients along the x and y direction,
respectively.

The fractional partial derivatives in (1.1) are defined in the Riemann-Liouville form.

Generally, for any γ>0, the Riemann-Liouville fractional partial derivatives
∂γw(x,y)

∂xγ and
∂γw(x,y)

∂yγ of order γ are defined by [28, 32, 35]

∂γw(x,y)

∂xγ
=

1

Γ(n−γ)

∂n

∂xn

∫ x

xL

w(ξ,y)

(x−ξ)γ+1−n
dξ (1.4)

and
∂γw(x,y)

∂yγ
=

1

Γ(n−γ)

∂n

∂yn

∫ y

yL

w(x,η)

(y−η)γ+1−n
dη, (1.5)

where n is an integer such that n−1<γ≤n. If γ is an integer, then the above definitions
give the standard integer partial derivatives.

The percolation equations have been applied successfully in groundwater hydraulics,
groundwater dynamics and fluid dynamics in porous media [7, 31, 40]. Under the as-
sumptions of seepage flow continuity and the traditional Darcy’s law, the traditional
percolation equation [24, 34] for two-dimensional seepage flow in porous media is just
the special case of equation (1.1) that αi = βi = 1 for i= 1,2. In view of the limitations of
these two assumptions above, He [12] proposed the modified Darcy’s law with Riemann-
Liouville fractional derivatives

qx = kx(x,y)
∂α1 p

∂xα1
, qy= ky(x,y)

∂α2 p

∂yα2
, 0<α1,α2<1, (1.6)

as a generalization of Darcy’s law for realistically describing the movement of solute in a
non-homogeneous porous medium. Furthermore, considering the fact that the seepage
flow is neither continued nor rigid body motion, He employed the fractional differential

operators ∂β1

∂xβ1
and ∂β2

∂yβ2
where 0 < β1,β2 ≤ 1 in the percolation equation, and then the

fractional percolation model (1.1) was obtained, which is the focus of this paper.
As analytic solutions of most fractional differential equations cannot be obtained ex-

plicitly, numerical methods become major ways and a wide variety of techniques have
been developed, including finite difference methods [25–27, 29, 37–39, 49–51], finite ele-
ment methods [2,8–10,16], finite volume methods [42,44,45,48], spectral methods [15,17,
47], and mesh-free methods [11, 20]. Recently, Liu et al. [21] proposed a first-order alter-
nating direction implicit scheme for the three-dimensional non-continued seepage flow
in uniform media and a second-order method which combined modified Douglas scheme
with Richardson extrapolation for the three-dimensional continued seepage flow in non-
uniform media. Chen et al. [5] developed an implicit finite difference method for the
initial-boundary value problem of one-dimensional fractional percolation equation with
left-sided mixed Riemann-Liouville fractional derivative, and they [6] considered an al-
ternating direction implicit difference method for the two-dimensional case by a similar


