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Abstract. In this paper, we study an exponential time differencing method for solving
the gauge system of incompressible viscous flows governed by Stokes or Navier-Stokes
equations. The momentum equation is decoupled from the kinematic equation at a
discrete level and is then solved by exponential time stepping multistep schemes in
our approach. We analyze the stability of the proposed method and rigorously prove
that the first order exponential time differencing scheme is unconditionally stable for
the Stokes problem. We also present a compact representation of the algorithm for
problems on rectangular domains, which makes FFT-based solvers available for the
resulting fully discretized system. Various numerical experiments in two and three
dimensional spaces are carried out to demonstrate the accuracy and stability of the
proposed method.

AMS subject classifications: 65M06, 65M22, 65Y20, 76D05, 76D07

Key words: Incompressible flows, Stokes equations, Navier-Stokes equations, gauge method,
exponential time differencing.

1 Introduction

As a fundamental model of incompressible viscous flows, the time-dependent parabolic
system of the velocity field u(t,x)=(u1,··· ,ud) and the pressure p(t,x),

{
ut−ν∆u+F(u)+∇p= f, in [0,T]×Ω,

∇·u=0, in [0,T]×Ω
(1.1)

has wide applications in engineering and scientific problems. In the mathematical model,
Ω∈Rd is the domain, f=( f1,··· , fd) represents the body force, F=(F1,··· ,Fd) represents
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the nonlinear convection, and ν> 0 denotes the kinematic viscosity of the fluids. When
F(u) is zero, the system is Stokes; when F(u) = (u·∇)u, the system is Navier-Stokes.
Many numerical methods have been developed for solving the system (1.1) in order to
simulate, predict and/or control the flows (see [10, 11, 14, 15, 25, 33] and references cited
therein).

In the development of efficient time integration methods for the fluid system, spe-
cial attentions have been drawn to deal with the incompressibility constraint. One of the
most popular methods is the projection method (or the so-called fractional step methods),
which was first developed in the late 1960s by Chorin and Temam independently [4, 32].
The basic idea is to decouple the velocity and pressure in a discrete setting so that one
only needs to solve a sequence of elliptic equations. Thus, it would greatly reduce the
computational complexity compared to the original fully coupled system. The exist-
ing projection methods are usually classified into three categories [11]: the pressure-
correction methods, the velocity-correction methods, and the consistent splitting meth-
ods. Among them, the popular pressure-correction methods ignore or treat explicitly the
pressure term in the first sub-step (i.e., treat viscous effect only) and then correct it in the
second sub-step (i.e., treat incompressibility); the velocity-correction methods switch the
roles of velocity and pressure terms as those in the pressure-correction method. In this
approach, the viscous effect is ignored or treated explicitly in the first sub-step and then
corrected in the second one; the consistent splitting methods first compute the velocity
by treating the pressure explicitly, then update the pressure by using the weak form of
a Poisson equation for the pressure. Although these approaches have been widely used,
it is still difficult to develop high-order (in time) schemes for both the velocity and pres-
sure. One of the main reasons is that the boundary condition for the pressure equation in
projection methods is artificial, which limits the flexibility and accuracy of the projection
methods, especially for the pressure approximation.

Another splitting approach is the gauge method [6–8, 29–31]. The method is based
on the Hodge decomposition (or Helmholtz-Hodge decomposition), which states that
a sufficient smooth, rapidly decaying vector field m = (m1,··· ,md) can be decomposed
into the sum of a divergence-free term u (a solenoidal part) and the gradient of a scalar
potential φ (an irrotational part), i.e.,

m(t,x)=u(t,x)+∇φ(t,x), (1.2)

where ∇·u=0 and these two components are orthogonal. The gauge system is reformu-
lated from (1.1), in which the velocity field u and the pressure p are replaced by the aux-
iliary filed m and the gauge variable φ. Based on the Hodge decomposition (1.2) and the
boundary conditions of velocity u, certain simple but consistent boundary conditions can
be assigned for both m and φ. The resulting system consists of a second-order parabolic
problem of m and a Poisson problem of φ that are weakly coupled through the boundary
conditions. In order to fully decouple the auxiliary field from the gauge variable dur-
ing simulations, an explicit extrapolation was used to generate an approximation of the
boundary values of m at a current time step by using its approximations from previous


