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Abstract. The Lattice Boltzmann Method (LBM) has established itself as a popular
numerical method in computational fluid dynamics. Several advancements have been
recently made in LBM, which include multiple-relaxation-time LBM to simulate aniso-
tropic advection-diffusion processes. Because of the importance of LBM simulations
for transport problems in subsurface and reactive flows, one needs to study the accu-
racy and structure preserving properties of numerical solutions under the LBM. The
solutions to advective-diffusive systems are known to satisfy maximum principles,
comparison principles, the non-negative constraint, and the decay property. In this
paper, using several numerical experiments, it will be shown that current single- and
multiple-relaxation-time lattice Boltzmann methods fail to preserve these mathemat-
ical properties for transient diffusion-type equations. We will also show that these
violations may not be removed by simply refining the discretization parameters. More
importantly, it will be shown that meeting stability conditions alone does not guar-
antee the preservation of the aforementioned mathematical principles and physical
constraints in the discrete setting. A discussion on the source of these violations and
possible approaches to avoid them is included. A condition to guarantee the non-
negativity of concentration under LBM in the case of isotropic diffusion is also derived.
The impact of this research is twofold. First, the study poses several outstanding re-
search problems, which should guide researchers to develop LBM-based formulations
for transport problems that respect important mathematical properties and physical
constraints in the discrete setting. This paper can also serve as a good source of bench-
mark problems for such future research endeavors. Second, this study cautions the
practitioners of the LBM for transport problems with the associated numerical defi-
ciencies of the LBM, and provides guidelines for performing predictive simulations of
advective-diffusive processes using the LBM.
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1 Introduction and motivation

The lattice Boltzmann method (LBM) has gained remarkable popularity as a versatile nu-
merical method for fluid dynamics simulations [12]. LBM has its roots in the kinetic the-
ory as opposed to the continuum theory. It needs to be emphasized that LBM solves the
Boltzmann equation instead of solving the continuum field equations. On the other hand,
the finite element method (FEM) and the finite volume method (FVM) solve the contin-
uum field equations directly. The lattice Boltzmann method has many attractive features,
for instance: (1) It can easily handle irregular domains (e.g., unstructured pores and frac-
tures in porous media applications), (2) It is easy to implement even for complicated
flow models, (3) It is natural to parallelize even in a heterogeneous computing setup [43].
Some recent advances are extension of LBM to simulate multi-phase flows [20], reactive
flows [35], non-linear chemical reactions [2], just to name a few.

Advection-diffusion equation plays a vital role in modeling a variety of physical phe-
nomena. For instance, modeling of reactive-transport [7,41], simulation of drug delivery
in blood [36, 39], transport of chemical species in porous media [4, 29]. Consequently,
extension of the LBM to advection-diffusion equation has been the focus of major scien-
tific research. In recent years, several key advancements have been made to extend the
LBM to simulate transport phenomena. To name a few: [9, 23, 38, 42, 46]. Of these works,
Yoshida and Nagaoka [46], and Huang and Wu [23] have proposed multiple-relaxation-
time lattice Boltzmann methods to solve advection-diffusion equations with anisotropic
diffusivity tensors. However, a numerical method can never be considered attractive for
predictive simulations, unless it preserves some (if not all) of the mathematical properties
of the equations it is aiming to solve.

The governing equations for transient advective-diffusive systems are parabolic par-
tial differential equations, which possess several important mathematical properties.
These properties include the maximum principle and the comparison principle [33, 34],
which have crucial implications in modeling physical phenomena. For example, a key
consequence of the maximum principle in modeling advective-diffusive systems is the
non-negative constraint of the attendant chemical species. Violations of these mathemat-
ical properties can make a numerical solution inappropriate for scientific and engineering
applications.

It has been shown that many popular finite element and finite volume formulations
for diffusion-type equations violate the maximum principle and the non-negative con-
straint [27,30,32]. Several factors such as the physical properties of the medium, topology
of the domain, and the spatial and temporal discretization determine the performance of
a numerical solution in preserving the discrete versions of the aforementioned mathemat-
ical properties. A discussion on the influence of these factors in the context of the finite
element method can be found in [30]. Note that a numerical method can be shown to
“converge” to the exact solution, but it may not always preserve the mentioned prop-
erties. Recently, numerical methodologies have been proposed under the finite element
method to satisfy the non-negative constraint and the maximum principle by utilizing


