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Abstract. We have developed easy to use fast multipole method (FMM) libraries for
the Laplace, low-frequency Helmholtz, and Stokes equations in two and three dimen-
sions. The codes are based on a new method for applying translation operators and
provide reasonable performance on either single core processors, or small multi-core
systems using OpenMP.
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Program Summary

Program title: FMMLIB

Nature of problem: Fast multipole method

Software licence: GPL 2.0

CiCP scientific software URL:

Distribution format: tar.gz, .zip
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Programming language(s): Fortran, Matlab

Computer platform: Any

Operating system: Any

Compilers: GNU Fortran, Intel Fortran Compiler

RAM:

External routines/libraries: FFTPACK (included)

Running time:

Restrictions:

Supplementary material and references:

Additional Comments:

1 Introduction

The FMMLIB package provides fully adaptive implementations of the fast multipole
method (FMM) for the Laplace, Helmholtz and Stokes equations. It is not highly op-
timized, intended rather to be accessible and modifiable with only modest effort. In
particular, the translation operators used in the three-dimensional libraries are based on
rotation and projection – a new, unified, and simple framework discussed briefly in Sec-
tion 3.1. For optimal performance, plane wave-based translation operators should be
used [3, 14]. This, however, would add significant complexity to the code, and would
make the algorithm less transparent to the user and more difficult to modify. Instead, we
provide a fully parallelized code which is reasonably well optimized for performance on
small multi-core systems using OpenMP. Further acceleration could be obtained by pre-
computation and storage in matrix form of many of the modules in the library (formation
of expansions from sources, evaluation of multipole and local expansions, etc.). In addi-
tion to increasing the memory costs, this would generally require a two-pass procedure
and would, again, make the software itself less accessible.

The fast multipole method computes N-body interactions and evaluates layer poten-
tials in O(N logN) time for non-pathological particle distributions. Typically, O(N logN)
work with a small constant is needed to build the adaptive tree data structure on which
the method relies and O(N) work with a larger constant is then required for the compu-
tation itself. In the case of the Helmholtz equation, we assume that the entire computa-
tional domain (the support of the scatterers) is a modest number of wavelengths in size.
This is the “low frequency” regime from the point of view of either scattering theory or
FMM implementation. The high-frequency version of the FMM is a more complex algo-
rithm, and has not been incorporated into this software release. We do, however, provide
a subroutine which is able to evaluate the scattered field at an arbitrary distance from the
scatterers in terms of a single multipole expansion about the center of the computational
domain.


