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Abstract. In this paper, preconditioned iterative methods for solving two-dimensional
space-fractional diffusion equations are considered. The fractional diffusion equation
is discretized by a second-order finite difference scheme, namely, the Crank-Nicolson
weighted and shifted Grünwald difference (CN-WSGD) scheme proposed in [W. Tian,
H. Zhou and W. Deng, A class of second order difference approximation for solving space
fractional diffusion equations, Math. Comp., 84 (2015) 1703-1727]. For the discretized
linear systems, we first propose preconditioned iterative methods to solve them. Then
we apply the D’Yakonov ADI scheme to split the linear systems and solve the obtained
splitting systems by iterative methods. Two preconditioned iterative methods, the pre-
conditioned generalized minimal residual (preconditioned GMRES) method and the
preconditioned conjugate gradient normal residual (preconditioned CGNR) method,
are proposed to solve relevant linear systems. By fully exploiting the structure of the
coefficient matrix, we design two special kinds of preconditioners, which are easily
constructed and are able to accelerate convergence of iterative solvers. Numerical
results show the efficiency of our preconditioners.
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1 Introduction

In this paper, we consider the following initial boundary value problem of two-dimensional
space-fractional diffusion equation [25, 43]:
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∂u(x,y,t)

∂t
=d+(x,y,t)aDα

xu(x,y,t)+d−(x,y,t)xDα
b u(x,y,t)

+e+(x,y,t)cD
β
y u(x,y,t)+e−(x,y,t)yD

β
d u(x,y,t)+ f (x,y,t),

(x,y,t)∈Ω×(0,T],

u(x,y,0)=u0(x,y), (x,y)∈Ω,

u(x,y,t)=0, (x,y,t)∈∂Ω×[0,T],

(1.1)

where 1< α,β< 2, d±(x,y,t),e±(x,y,t)≥ 0, and Ω= (a,b)×(c,d). In addition, aDα
x , xDα

b ,

cD
β
y , and yD

β
d are the left-sided and right-sided Riemann-Liouville fractional derivatives

defined by 
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(x−ξ)α−1
dξ,

xDα
b u(x,y,t)=

1
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x

u(ξ,y,t)

(ξ−x)α−1
dξ,

cD
β
y u(x,y,t)=

1

Γ(2−β)

d2

dy2

∫ y

c

u(x,η,t)

(y−η)β−1
dη,

yD
β
d u(x,y,t)=

1

Γ(2−β)

d2

dy2

∫ d

y

u(x,η,t)

(η−y)β−1
dη.

Fractional diffusion equations (FDEs) have many applications in various fields, such
as fluid mechanics, finance, biology, turbulent flow, electrochemistry physics, and image
processing [2, 8, 18, 22, 28, 31, 33, 35, 36]. Since closed-form solutions are only available for
very few FDEs, a variety of numerical methods for FDEs have been developed in the last
decade [12–16, 21, 24–27, 32, 37, 38, 41, 44].

In 2004 and 2006, Meerschaert and Tadjeran proposed a shifted Grünwald discretiza-
tion scheme to approximate the FDE with a left-sided fractional derivative and the FDE
with two-sided fractional derivatives, respectively [24,25]. In 2006, Tadjeran, Meerschaert,
and Scheffler proposed a second-order accurate numerical scheme based on the classical
Crank-Nicolson method and the Richardson extrapolation scheme [38]. Their methods
were proved to be unconditionally stable. In 2012, Tian, Zhou, and Deng proposed a
weighted and shifted Grünwald difference (WSGD) scheme to approximate left-sided
and right-sided Riemann-Liouville fractional derivatives, and obtained a class of second-
order accurate CN-WSGD schemes [39].

Although the discretization of second-order partial differential equations leads to
linear systems with sparse coefficient matrices, the matrices corresponding to FDEs are
full. Fortunately, the coefficient matrices of the above mentioned methods possess a
special Toeplitz-like structure: it can be written as a sum of diagonal-multiply-Toeplitz
matrices [39, 41]. Thus the storage requirement is significantly reduced from O(N2) to


