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Abstract. In this paper, we are concerned with the constrained finite element method
based on domain decomposition satisfying the discrete maximum principle for diffu-
sion problems with discontinuous coefficients on distorted meshes. The basic idea of
domain decomposition methods is used to deal with the discontinuous coefficients. To
get the information on the interface, we generalize the traditional Neumann-Neumann
method to the discontinuous diffusion tensors case. Then, the constrained finite ele-
ment method is used in each subdomain. Comparing with the method of using the
constrained finite element method on the global domain, the numerical experiments
show that not only the convergence order is improved, but also the nonlinear iteration
time is reduced remarkably in our method.
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1 Introduction

There are many applications of diffusion equations, such as geology components, im-
age dispose and so on. In some multi-material problems, the diffusion tensors are dis-
continuous, and the computational meshes are usually distorted. So, in practical com-
putations, we have to solve the diffusion equations with discontinuous coefficients on
distorted meshes. A good numerical scheme should be not only stable and convergent,
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but also possesses the mathematical property of the physical system, such as positivity-
preserving or satisfying the discrete maximum principle (DMP). The maximum principle
means, if the source term is non-positive, then the solution attains its maximum on the
boundary. A numerical scheme that does not generate spurious extrema in the interior of
the domain is said to satisfy the discrete maximum principle, which makes it possible to
prove the uniform convergence of an approximate solution to the exact one. In the suffi-
cient conditions of the DMP, M-matrix plays an important role [2, 4]. If the inverse of the
coefficient matrix is non-negative, then the solution of the algebraic system is also non-
negative for any non-negative right-hand side. A numerical scheme enjoys this property
is called positivity-preserving. We should point out that, the DMP criterion is more strin-
gent than the positivity-preserving since it requires that the row sums of the coefficient
matrix be zero for all interior nodes.

As we know, it is very difficult to construct a numerical scheme satisfying the discrete
maximum principle. Based on the finite volume discretization, the continuous edge flux
scheme [10], which needs high regularity, can solve the diffusion problems with smooth
coefficients effectively, but fails for the discontinuous coefficients. The multi-point flux
approximation (MPFA) methods [11–13] and the mimetic finite difference (MFD) meth-
ods [14, 15] are monotone for the shape-regular meshes, but when the diffusion tensors
are anisotropic or the meshes are distorted, these methods do not satisfy the positivity-
preserving property. The diffusion scheme, which is addressed in [24], is positivity-
preserving on various distorted meshes for both smooth and non-smooth solutions. But,
from the structure of the algebraic system, we can see that this scheme does not satisfy
the discrete maximum principle.

For the finite element methods, the sufficient conditions of the DMP are imposed by
severe restrictions on the choice of basis functions and on the geometric properties of the
mesh. For example, when the triangulation is acute or non-obtuse, the piecewise-linear
finite element solutions of the Poisson equation satisfying the DMP [3]. When the quadri-
laterals are non-narrow, the bilinear finite element solutions satisfy the DMP. However,
these geometric restrictions fail in the case of high-order finite elements, singularly per-
turbed convection-diffusion equations and anisotropic diffusion problems. A nonlinear
Galerkin finite element method [1] is proposed for isotropic Laplace equation on dis-
torted meshes. Based on repair techniques and constrained optimizations, the methods
addressed in [5–7] enforce the linear finite element solution and the mixed element solu-
tion satisfying the DMP. Two approaches are addressed in [5]. The first approach is based
on the repair technique, which is a posteriori correction of the discrete solution. The sec-
ond approach is based on the constrained optimization, in which the linear constraints
are introduced. In these two approaches, only the global discrete energy of the solution is
preserved. We should point out that when the total available energy is less than the total
needed one, this repair technique will result in a dead circle and has to terminate, and the
solution of the constrained optimization is very expensive as the number of unknowns is
increased. In [6], two non-negative mixed finite element formulations for tensorial diffu-
sion equations based on constrained optimization techniques are proposed. The first for-


