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Abstract. This paper is concerned with unconditionally optimal error estimate of the
linearized Galerkin finite element method for solving the two-dimensional and three-
dimensional Kuramoto-Tsuzuki equations, while the classical analysis for these non-
linear problems always requires certain time-step restrictions dependent on the spatial
mesh size. The key to our analysis is to obtain the boundedness of the numerical ap-
proximation in the maximum norm, by using error estimates in certain norms in the
different time level, the corresponding Sobolev embedding theorem, and the inverse
inequality. Numerical examples in both 2D and 3D nonlinear problems are given to
confirm our theoretical results.
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1 Introduction

In this paper, we consider the optimal error estimates of linearized finite element method
(FEM) for solving the following multi-dimensional Kuramoto-Tsuzuki equation
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ut=(1+ic1)∆u+u−(1+ic2)|u|2u, x∈Ω, 0< t≤T, (1.1)

u(x,0)=u0(x), x∈Ω, (1.2)

u=0, x∈∂Ω, (1.3)

where i=
√
−1, c1 and c2 are real constants, u is a complex unknown function defined

in Ω×[0,T], and Ω ⊂ R
d for d = 2 or 3 is bounded and convex polygon/polyhedron.

The Kuramoto-Tsuzuki equation is widely used to describe the behavior of many two-
component systems in a neighborhood of the bifurcation point [1,2]. It also can be viewed
as a special case of the complex Ginzburg-Landau equation, which is widely used to de-
scribe a huge number of phenomena from nonlinear waves to second-order phase tran-
sitions, from superconductivity and Bose-Einstein condensation to liquid crystals and
strings in field theory [3].

Many efforts have been made to develop effective numerical methods and analysis for
solving the one dimensional Kuramoto-Tsuzuki equation. For example, Tsertsvadze [6]
developed an implicit finite difference scheme and proved that it was convergent with

the rate of order O(h
3
2 ) in the discrete L2-norm under the constraint τ=h2+δ with constant

δ> 0. Here and below, h and τ denote the spatial and temporal mesh size, respectively.
Sun [7] further proved that Tsertsvadze’s scheme converges at the rate of O(τ2+h2) by
removing the constraint for one dimensional problem. Omrani [8] investigated a second-
order convergent linearized Galerkin approximation to the one dimensional Kuramoto-
Tsuzuki equation. Wang et al. [9] proposed a nonlinear finite difference scheme with
the rate of order O(τ2+h2). More results about numerical analysis for one dimensional
problem can be found in the papers [10–14].

The error estimates of numerical schemes for high-dimensional nonlinear problems
are usually derived under certain time-step restrictions dependent on the spatial mesh
size. One of the important reasons is that one may apply the following inverse inequality
to obtain the boundedness of ‖Un

h ‖L∞ , i.e.,

‖Un
h ‖L∞ ≤‖Rhun‖L∞+‖Rhun−Un

h‖L∞

≤‖Rhun‖L∞+Ch−d/2‖Rhun−Un
h‖L2

≤‖Rhun‖L∞+Ch−d/2(τp+hr+1), (1.4)

where Rh is the classical projection operator, p and r+1 are the orders of convergence in
both temporal and spatial directions, Un

h and un are the numerical and exact solutions.

Clearly, a time-step condition τ=O(h
d

2p ) is needed in (1.4). For the error estimates under
such time-step restrictions, we refer to [15–21] for an incomplete list of references. If the
similar restrictions are required, one may apply an unnecessarily small time step in actual
application. Then it may make the computation more time-consuming.

Optimal error estimates without the above mentioned time-step restrictions is so-
called unconditional convergence. Recently, Li and Sun [22, 23] proposed a new ap-


