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Abstract. We propose and study a double source transfer domain decomposition me-
thod (Double STDDM) for solving the truncated perfectly matched layer approxima-
tion in the bounded domain of Helmholtz problems. Based on the decomposition of
the domain into non-overlapping layers and instead of transferring the source along
one direction in STDDM [Z. Chen and X. Xiang, 2013], Double STDDM transfers the
source in each layer along two directions, which can capture of the reflection infor-
mation for heterogenous media. Double STDDM is an iterative scheme, and in each
iteration, it first transfers the source from down to up and produces the Up wave (the
wave propagating from down to up), and then transfers the source from up to down
and produces the Down wave (the wave propagating from up to down). The output
of Double STDDM is the summation of the Up and Down waves that are produced
during the iteration. By using the fundamental solution of the PML equation, the con-
vergence of Double STDDM is proved for the case of a constant wavenumber.
Numerical examples are included to show the efficient performance of using Double
STDDM as a preconditioner both for the problems with constant and heterogenous
wavenumbers. For problems with a low velocity contrast, the number of iterations
is independent of the wavenumber and mesh size, whereas for problems with a high
velocity contrast, double STDDM performs much better than STDDM.
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1 Introduction

We propose and study a Double STDDM (source transfer domain decomposition me-
thod) for solving the unbounded Helmholtz problem:

∆u+k2u= f in R
2, (1.1)
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r1/2

(

∂u

∂r
−iku

)

→0 as r= |x|→∞, (1.2)

where k(x)=ω/c(x)>0 is the wavenumber and f ∈H1(R2)′ has compact support, where
H1(R2)′ is the dual space of H1(R2). We assume that no reflection waves exist that prop-
agate from outside a bounded domain; e.g., k(x) may be a constant outside a bounded
domain. c(x) is known as the velocity field, and ω is the frequency. We remark that
the results in this paper can be easily extended to solve three-dimensional Helmholtz
problems.

The Helmholtz equation (1.1)-(1.2) appears in diverse scientific and engineering ap-
plications, including acoustics, elasticity, and electromagnetics. An efficient algebraic
solver for large wavenumber discrete Helmholtz equation based on finite difference or
finite element discretization is challenging due to the huge number of the degrees of free-
dom required and the highly indefinite nature of the discrete problem [1]. The proposed
Double STDDM can be used as an efficient preconditioner for the problems with constant
and heterogenous wavenumbers: for problems with low velocity contrast, the iteration
number is independent of the wave number and mesh size, whereas for problems with
high velocity contrast, double STDDM can be used as a better preconditioner than the
traditional STDDM proposed by the author in [2].

1.1 From STDDM to Double STDDM

We first briefly introduce the STDDM proposed in [2]. Let Ωi = {x=(x1,x2)T ∈R2 : ζi <

x2 < ζi+1}, ζi ∈R, i=1,··· ,N, be the layers whose union covers the support of the source
f . Let Ω0={x=(x1,x2)T ∈R2 : x2< ζ1} and ΩN+1={x=(x1,x2)T ∈R2 : x2> ζN+1}. Let fi

be the restriction of f in Ωi and vanish outside Ωi. It is clear that

u(x)=−
∫

R2
f (y)G(x,y)dy=−

N

∑
i=1

∫

Ωi

fi(y)G(x,y)dy,

where G(x,y) is the fundamental solution of (1.1) - (1.2):

∆G(x,y)+k2(x)G(x,y)=−δy(x) in R
2.

For the problems with a constant wavenumber, i.e. k(x)=k, G(x,y)=(i/4)H
(1)
0 (k|x−y|).

Let f̄1 = f1. The key idea of the STDDM proposed in [2] is that if one can find a proper
way to transfer the source from Ωi to Ωi+1 in the sense that

∫

Ωi

f̄i(y)G(x,y)dy=
∫

Ωi+1

Ψi+1( f̄i)(y)G(x,y)dy, ∀x∈Ωj, j> i+1, (1.3)

then for f̄i+1= fi+1+Ψi+1( f̄i), we transfer sources layer by layer and have

u(x)=−
∫

ΩN

fN(y)G(x,y)dy−
∫

ΩN−1

f̄N−1(y)G(x,y)dy, ∀x∈ΩN . (1.4)


