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Abstract. In this paper, we propose a new gradient vector flow model with advection
enhancement, called advection-enhanced gradient vector flow, for calculating the ex-
ternal force employed in the active-contour image segmentation. The proposed model
is mainly inspired by the functional derivative of an adaptive total variation regular-
izer whose minimizer is expected to be able to effectively preserve the desired object
boundary. More specifically, by incorporating an additional advection term into the
usual gradient vector flow model, the resulting external force can much better help the
active contour to recover missing edges, to converge to a narrow and deep concavity,
and to preserve weak edges. Numerical experiments are performed to demonstrate
the high performance of the newly proposed model.
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1 Introduction

The technique of snake (also called active contour) was first introduced by Kass et al. [14]
for image segmentation and it has been widely used in many applications of computer
vision and image processing, such as edge detection, shape recognition, and object track-
ing etc., see e.g., [11,14,17,21,28]. Roughly speaking, a snake is represented by a contour
that can deform to achieve boundary extraction of the desired object through an energy-
minimization process. The contour-minimizing energy basically consists of two parts,
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in which the internal energy part, defined by the snake itself, is designed to control the
smoothness and tightness of the snake, while the external energy part, represented by
a certain image quantity, is used to drive the snake to approach the desired features in
the image such as object edges. By using the calculus of variations, a minimizer of the
energy functional satisfies a force balance equation which is also consisting of two parts,
the internal force and the external force. When the internal and external forces achieve
balance, the energy achieves a minimum value.

According to the ways of implementing the snake, there are basically two types of
active contours. One is the parametric active-contour [9, 10, 14, 18, 25, 26], where con-
tours are explicitly represented as parameterized curves, and the other is the geometric
active-contour [4–6, 20], which is largely inspired by level set methods and represents
curves implicitly. In general, the former has much lower computational complexity, so
its implementation is efficient in convergence speed. Nevertheless, the latter is capable
of handling changes in the topology of contours so that the snake can split or merge
naturally during the evolution process for dealing with images with multiple objects.

In this paper, we will focus on the parametric active-contours for image segmentation.
Although the parametric snake is able to perform flexible deformations, some major dif-
ficulties such as small capture range, deep and narrow concavity convergence and weak-
edge leakage still remain and need to be addressed further [8,15,18,19,22,30,34]. To over-
come these limitations, the external force field, which is usually written as the gradient of
a potential function, plays an important role and it has been extensively improved over
the years. In 1998, Xu and Prince [32] proposed the gradient vector flow (GVF), which dif-
fuses the gradient vector field (i.e., external force field) to enlarge the capture range and
improves the convergence for entering concavities. However, the snake using GVF exter-
nal force is not able to go into long and thin indentations (LTIs for short) [23,33] and may
cause leakage problems [32]. Due to this reason, Xu and Prince then developed a gen-
eralized version of the GVF snake, called the generalized GVF (GGVF) [33], by adding
two spatially varying weighting parameters to improve the convergence into LTIs and
protect weak edges. Afterwards, Ning et al. [23] introduced an improved external force
field for snakes, called the GVF in normal direction (NGVF for short). By decomposing
the Laplacian operator and adopting only the normal component, the NGVF snake can
achieve a faster convergence speed towards concavities, but the convergence capability
for LTIs has not been significantly improved. On the other hand, Wang et al. [29] stud-
ied another new external force field, called the normally biased GVF (NBGVF). It mainly
adopts the tangential component of diffusion to preserve weak edges, and then adds the
normal component as a biasing weight to maintain some desirable properties of GVF
and NGVF. Recently, to take care of both weak-edge preserving and LTI convergence,
Wu et al. [30] investigated an adaptive diffusion flow (ADF) field by adaptively adopting
a harmonic hypersurface minimal functional and an infinity Laplacian functional. The
ADF snake possesses several good properties including weak-edge preserving, concavity
convergence, and noise robustness. In summary, all the above methods mainly employ
diffusion to act on the gradient vector field, in the direction of tangential, normal, or both.
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In this paper, borrowing an idea from image denoising, we will present a new type of
external force employed in the active-contour image segmentation that applies advection
[13,16] to enhance the gradient vectors. To the best of our knowledge, the advection effect
has not been investigated before in the study of active-contour image segmentation. This
newly proposed model, which we call the advection-enhanced GVF (AeGVF), is mainly
inspired by the functional derivative of an adaptive total variation (TV) regularizer [12],
from which we can find that the advection term indeed plays an important role in keeping
the edges of the desired object. By incorporating the advection effect into the usual GVF
model in solving the external force field, not surprisingly, the resulting AeGVF model
is able to preserve the object boundaries efficiently. We will present several numerical
examples on synthetic and real images to illustrate the high performance of the newly
proposed model. Numerical experiments show that the AeGVF can effectively deal with
the issues of weak edges, narrow and deep concavities, and missing edges.

The remainder of this paper is organized as follows. In Section 2, the traditional
snake with GVF model and some improvements are briefly described. In Section 3, the
novel AeGVF model is proposed and discussed in detail. In Section 4, some numerical
experiments are performed that demonstrate the better performance of our approach
compared with some existing flow models. Finally, a brief summary and conclusions
are presented in Section 5.

2 Background

2.1 Traditional snakes

We consider a snake (active contour) that is a 2-D parametric curve z(s) = (x(s),y(s)),
s∈ [0,1]. The active contour moves through the spatial domain Ω of an image I(x,y) to
minimize the following energy functional over a suitable function space [14]:

Esnake(z)=
∫ 1

0

1

2

(

α|zs(s)|
2+β|zss(s)|

2
)

+Eext(z(s))ds, (2.1)

where the subscript s means that we differentiate a function with respect to the variable
s; α and β are constant parameters controlling the snake’s tension and rigidity, respec-
tively; Eext is a given external function related to the image data so that its values at the
features of interest, such as the image boundaries, are as small as possible. In principle,
snakes possess the continuity and smoothness characterized by the first two terms dur-
ing deformation, and move toward the desired object features by the external function
Eext.

In order to obtain a snake z(s) which at least locally minimizes the energy functional
Esnake, a common strategy is to use the calculus of variations and then to solve the associ-
ated Euler-Lagrange equation with appropriate boundary conditions:

αzss(s)−βzssss(s)−∇zEext(z(s))=0, 0< s<1, (2.2)
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where ∇z denotes the gradient operator with respect to the variable z=(x,y). In practice,
we will treat the curve z as a function not only in the original parameterization variable
s but also in the time variable t. We then solve an evolution equation,

∂z

∂t
(s,t)−αzss(s,t)+βzssss(s,t)=−∇zEext(z(s,t)), (s,t)∈ (0,1)×(0,T], (2.3)

to reach a steady-state solution for a sufficiently large time T> 0, where we have to im-
pose the initial contour z(s,0)=z0(s) for s∈ [0,1] with appropriate boundary conditions.
When ∂z/∂t=0, we obtain a steady-state solution of (2.3) which is also a solution of (2.2).
Meanwhile, the evolution of the solution shows how the snake moves to the one that has
the desired image attributes. In fact, (2.2) can also be viewed as a force balance equation
expressed in the form

F int(z(s))+Fext(z(s))=0, (2.4)

where F int(z(s))=αzss(s)−βzssss(s) and Fext(z(s))=−∇zEext(z(s)). Generally speaking,
the internal force F int suppresses the stretching and bending of the snake contour, while
the external force Fext attracts it to the desired image features such as the edges [32].

The external function Eext is a key ingredient for the performance of image segmen-
tation. It is usually defined as a local feature of the image, and for different images or
purposes, it can be designed in different ways. For example, if an image I(x,y) is a line
drawing (black on white), an appropriate external function [8,14] can be chosen as one of

Eext(x,y)= I(x,y) in Ω, (2.5)

Eext(x,y)=Gσ∗ I(x,y) in Ω, (2.6)

where Gσ is the two-dimensional Gaussian kernel with standard deviation σ, and the
symbol ∗ denotes the usual convolution. Under these circumstances, the snake will be
attracted to contours with small intensities. If an image is a gray-level one and someone
wants to seek step edges, two popular external functions [14] are given by

Eext(x,y)=−|∇I(x,y)|2 in Ω, (2.7)

Eext(x,y)=−|∇(Gσ∗ I(x,y))|2 in Ω. (2.8)

In these two situations, the snake will be attracted to contours with large image gradients
in magnitude. Some other appropriate external functions can also be found in, e.g., [8].
We remark that the Gaussian kernel convolution can filter noises and also has a little
ability to extend the capture range which is a region where the external forces are strong
enough to drive contour evolution. However, increasing the value of σ to get a wide
capture range is infeasible because it will weaken the external forces and blur the desired
features such that the boundary location becomes more inaccurate.

From another viewpoint, a traditional external force written as the negative gradient
of a potential function, namely, Fext =−∇zEext, usually has some drawbacks [32] such
as (i) limited capture range: the traditional external forces only exist in small neighbor-
hood near the image features of interest and as a consequence, the location of the initial
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contour z0(s) must be put as close as to the target object. Otherwise, the snake can not
move anywhere; (ii) poor convergence for concavities: a force pointing to the bottom of a
concavity can pull the snake to enter the concavity, but the traditional external forces near
the center of the entrance do not generally have such good property due to the limited
capture range. These limitations need to be carefully considered and addressed.

2.2 The gradient vector flow model

In order to overcome the shortcomings arising in the traditional external forces, Xu and
Prince [32] have proposed a novel approach to construct efficient and reliable external
forces as follows. Let Eext be an external function and define the so-called edge map by

f (x,y) :=−Eext(x,y) in Ω, (2.9)

whose value is larger near the desired features. Then they considered the following mini-
mization problem: Find V(x,y)=(u(x,y),v(x,y))⊤ in a suitable function space that minimizes
the energy functional

E(u,v)=
∫∫

Ω

µ|∇V |2+|∇ f |2|V−∇ f |2 dxdy, (2.10)

where µ>0 is a regularization parameter and

|∇V |= |(∇u,∇v)⊤|=
√

u2
x+u2

y+v2
x+v2

y.

Solution V of the minimization problem is called the gradient vector flow (GVF) field,
which will be applied to replace the term −∇zEext in (2.2) or (2.3) to obtain a snake. A
snake using the GVF as the external force will be called a GVF snake.

In practice, one can consider the Euler-Lagrange equation associated with the mini-
mization of (2.10) and then the GVF is obtained by solving the following initial-boundary
value problem for a sufficiently large time T>0 to reach a steady-state solution:



















∂V

∂t
=µ∇2

V−|∇ f |2(V−∇ f ) in Ω×(0,T],

V(z,0)=∇ f in Ω,

∇V ·n=0 on ∂Ω×(0,T],

(2.11)

where ∇2 is the Laplacian operator, ∇V ·n := (∇u·n,∇v·n)⊤, and n denotes the unit
outer normal vector to ∂Ω. From (2.10) and (2.11), we can observe that the GVF is almost
equal to the traditional external force Fext=∇ f =−∇Eext when |∇ f | is sufficiently large
(namely, near the edges) and the diffusion term will spread the forces to the regions far
from the edges. Also, we may expect that the GVF has a wider capture range and can
enter concave regions.
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2.3 Some improved gradient vector flow models

As we have mentioned above, the GVF snake model may improve the ability of the tra-
ditional snake model, but it still has some limitations that should be further addressed.
For example, if an image has one of the following characteristics, then the GVF snake
generally exhibits a poor performance [23, 29, 30, 33]:

(i) a weak edge and a strong edge are very close;

(ii) the image has a narrow and deep concavity;

(iii) a strong edge is near a missing edge;

(iv) the image is corrupted by noise.

To deal with these issues, there are many improved GVF fields developed and investi-
gated in the past two decades. In the following, we briefly review some improved GVF
fields that will be also carried out in our numerical experiments in Section 4 below.

2.3.1 The generalized gradient vector flow model

In [33], Xu and Prince have further developed a new external force, called the general-
ized gradient vector flow (GGVF) field. This GGVF is obtained by solving the following
evolution problem at a sufficiently large time T>0:



















∂V

∂t
= g(|∇ f |)∇2

V−h(|∇ f |)(V −∇ f ) in Ω×(0,T],

V(z,0)=∇ f in Ω,

∇V ·n=0 on ∂Ω×(0,T],

(2.12)

where g and h are spatially varying weighting functions depending on the gradient of
the edge map f . Obviously, when g(|∇ f |) :=µ and h(|∇ f |) := |∇ f |2 , this model reduces
to the original GVF model. In general, we hope that the effect of the diffusion term only
exists at locations far from the edges to prevent the edges from being polluted too much
and that V is equal to ∇ f as much as possible when it is near the edges. To this goal, Xu
and Prince [33] suggested the appropriate weighting functions as

g(|∇ f |)=exp{−|∇ f |/k}, (2.13)

h(|∇ f |)=1−g(|∇ f |), (2.14)

where k>0 is a constant parameter. However, both the GVF and GGVF fields still have
difficulty in forcing a snake into a long and thin concavity because they mainly rely on
the Laplacian operator which is an isotropic smoothing operator to produce excessive
smoothness near edges.
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2.3.2 The normal gradient vector flow model

Note that the Laplacian diffusion can be locally decomposed [2] as

∇2
V =V TT+V NN , (2.15)

where V TT =(uTT,vTT)
⊤ and V NN =(uNN ,vNN)

⊤ denote the second derivatives of V in
the tangential direction T and normal direction N, respectively. For example,

uTT=
1

|∇u|2

(

u2
xuyy+u2

yuxx−2uxuyuxy

)

, uNN =
1

|∇u|2

(

u2
xuxx+u2

yuyy+2uxuyuxy

)

.

From the viewpoint of image interpolations [7], one can observe that V NN has great in-
terpolating effects when compared with ∇2

V and V TT. Based on this observation, Ning
et al. [23] developed a new external force, called the normal gradient vector flow (NGVF)
field, which is obtained by solving the following initial-boundary value problem at a
sufficiently large time T>0:



















∂V

∂t
=µV NN−|∇ f |2(V−∇ f ) in Ω×(0,T],

V(z,0)=∇ f in Ω,

∇V ·n=0 on ∂Ω×(0,T].

(2.16)

Unlike the GGVF, the NGVF only employs the normal component V NN of the ∇2
V to

generate the force fields. Thus, it is an anisotropic method and, in general, it is stable for
larger time steps or larger diffusivity [23]. The anisotropic property makes the attractive
forces on the bottom of the concavities have more chances to be spread out to the entrance
such that the snake can be pulled into the concave regions. However, in practice, the
improvement for LTIs is still limited, so the NGVF still encounters convergence issues
for LTIs. In addition, the NGVF also has trouble in preventing weak-edge leakage [29].

2.3.3 The normally biased gradient vector flow model

On the other hand, focusing on the weak-edge problems, Wang et al. [29] proposed a
new external force, called the normally biased gradient vector flow (NBGVF) field. The
NBGVF is obtained by solving the following initial-boundary value problem at a suffi-
ciently large time T>0:



















∂V

∂t
=µ

(

V TT+g(|∇ f |)V NN

)

−|∇ f |2(V−∇ f ) in Ω×(0,T],

V(z,0)=∇ f in Ω,

∇V ·n=0 on ∂Ω×(0,T],

(2.17)

where g(|∇ f |):=exp{−(|∇ f |/k)2} with the constant parameter k>0. When |∇ f | is large
(i.e., near the edges), this model mainly adopts the diffusion in the tangential direction
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which is beneficial for preserving weak edges. When |∇ f | is getting small, the value of
the bias is getting large so that this model almost uses the Laplacian diffusion to carry
forces in homogeneous regions. This approach can preserve weak edges efficiently but
do not have the ability for moving into LTIs [29]. Although one may design a weighted
function g whose values are bigger than 1 in homogeneous regions such that the effect of
VNN becomes larger, it may cause the numerical instability so that the time step should
be taken carefully in the numerical discretization scheme.

2.3.4 An adaptive diffusion flow model

To have both good properties of weak edge preserving and concavity convergence, Wu
et al. [30] proposed an adaptive diffusion flow (ADF), which is obtained by solving the
following initial-boundary value problem at a sufficiently large time T>0:































∂V

∂t
= g(|∇ f |)

{

γ
∆∞V

|∇V |2
+(1−γ)∇·

(Φ′(|∇V |)

|Gσ∗∇V |
Gσ∗∇V

)}

−h(|∇ f |)
(

V−∇ f
)

in Ω×(0,T],

V(z,0)=∇ f in Ω,

∇V ·n=0 on ∂Ω×(0,T],

(2.18)

where g and h are the same as those of the GGVF, ∆∞ denotes infinity Laplacian (cf. [1]),

Φ(|∇V |)=
1

p(|∇ f |)

(

√

1+|Gσ∗∇V |2
)p(|∇ f |)

, (2.19)

p(|∇ f |)=1+
1

1+|∇(Gσ ∗ f )|
, (2.20)

γ=

{

(

1− f 2/(5k2)
)2

if ( f 2/5)≤ ℓ2,

0 otherwise,
(2.21)

ℓ=1.4826
(

E(|∇ f −E(|∇ f |)|
)

, (2.22)

with k>0 a constant parameter and E(·) the mean value. One can find that when γ=0, the
smoothness is determined by the harmonic hypersurface functional, which has the ability
to protect weak edges. On the other hand, when γ = 1, the smoothness is dominated
by the infinite Laplacian term, which has the ability to converge into narrow and deep
concavities [30]. With this adaptive diffusion strategy, the ADF is expected to possess the
advantages of both models of the NGVF and NBGVF fields.

3 The advection-enhanced gradient vector flow model

From the discussions in the previous section, it can be concluded that the weighting func-
tions g and h, together with the diffusion in normal direction V NN, is able to improve the
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convergence performance for an image having LTIs, while the diffusion in tangential
direction V TT can preserve weak edges. Indeed, many modified GVF models in the lit-
erature are further developed based on the direct combination of them. In this section,
we are going to introduce a novel GVF model built on a new concept for coping with
weak and missing edges. In principle, the ingredients of our new GVF model should in-
clude the normal diffusion V NN , the weighting functions g and h, and further we desire
a new alternative to the tangential diffusion V TT for better preserving the vector fields of
external force along image edges.

3.1 Advection: an alternative to tangential diffusion

In image denoising, it is well known that the total variation (TV) regularization model
[24], whose regularizer is chosen as the L1 norm of the image gradient, can suppress
the variation caused by noise without penalizing the edge gradient too much. Using
the bounded variation space, the TV model successfully preserves image features such
as edges or other sharp structures. To develop an alternative to V TT, we begin with,
borrowing the idea from image denoising, the following adaptive TV regularizer [12]:

∫∫

Ω

α|∇w|dxdy, (3.1)

where α:=α(x,y) is used as a spatial-varying controller to improve the performance of the
original TV regularizer. Here w is a scalar function in a suitable function space of interest
defined on Ω, which can be viewed as either component of the vector field V =(u,v)⊤

discussed in Section 2; that is, one can take w as u or take w as v.
By a direct computation, the associated functional derivative of (3.1) is given by

−∇·
( α

|∇w|
∇w

)

=−
α

|∇w|
∇2w−∇

( α

|∇w|

)

·∇w

=−
α

|∇w|
∇2w−

( ∇α

|∇w|
−

α

|∇w|3
(

wxwxx+wywyx, wxwxy+wywyy

)⊤
)

·∇w

=−
α

|∇w|
∇2w−

1

|∇w|
∇α·∇w+

α

|∇w|3

(

w2
xwxx+2wxwywyx+w2

ywyy

)

=−
α

|∇w|
∇2w−

1

|∇w|
∇α·∇w+

α

|∇w|
wNN

=−
1

|∇w|

(

αwTT+∇α·∇w
)

, (3.2)

which reveals that both the terms αwTT and ∇α·∇w are closely related to the ability for
preserving image edges. In particular, if we take α≡1, then αwTT=wTT and ∇α·∇w van-
ishes. In this case, the regularizer in (3.1) reduces to the original TV and the associated
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operator obtained from the functional derivative is simply the tangential diffusion oper-
ator wTT. This operator wTT in general has a global support and it will form a complete
diffusion operator when combining with the normal diffusion operator wNN, which prob-
ably leads to the failure for the snake entering LTIs. Intuitively, if we can choose some
appropriate controller α such that these two terms αwTT and ∇α·∇w in (3.2) have only
local support near edges then we can construct a new operator which preserves edges
while leaves other regions unaffected. To this end, an appropriate choice is to take α= f ,
where f is the edge map defined in (2.9), and the two resulting terms operate locally as
desired. Since the value of f is large at edges and small otherwise, the diffusion term
f wTT works almost on edges, that means, f wTT only preserves vector fields on edges.
However, what we want to preserve are the vector fields beside edges rather than the
vector fields on edges, since they may extrude the snake. To accurately stop the snake at
edge locations, the force fields on edges should be removed. As a consequence, the term
αwTT in (3.2) with α= f has no substantial effect and can be discarded, and the advection
term ∇α·∇w becomes ∇ f ·∇w.

To summarize, minimizing the proposed regularizer in (3.1) is expected to effectively
preserve edges. Taking α to be the edge map f , the resulting advection term ∇ f ·∇w
can be regarded as a better edge-preserving term than the tangential diffusion term wTT,
since it can not only increase the strength of attractive forces to prevent the data fidelity
from being destroyed but also leave the homogeneous regions unaffected. From this
perspective, we now therefore propose a heuristic model, called the advection-enhanced
GVF (AeGVF), by solving the following evolution problem at a sufficiently large time
t=T to approach a steady-state solution:



























∂V

∂t
= g(|∇ f |)V NN−

(

µc
χ

Ω\Ec
+µp

χ
Ep

)

∇ f ·∇V

−h(|∇ f |)
(

V−∇ f
)

in Ω×(0,T],

V(z,0)=∇ f in Ω,

∇V ·n=0 on ∂Ω×(0,T],

(3.3)

where g(|∇ f |) :=exp{−(|∇ f |/k)2}, h(|∇ f |) :=1−g(|∇ f |), µc and µp are two nonnega-

tive parameters, ∇ f ·∇V :=(∇ f ·∇u,∇ f ·∇v)⊤ , the characteristic function χ
A of a given

set A is defined by

χ
A(z)=

{

1 if z∈A,

0 if z /∈ A,
(3.4)

Ec and Ep denote the sets of corner points and endpoints of boundary curves in the image,
respectively. More precisely, Ec collects points on boundary curves where gradient is not
well defined, while Ep collects points on the two ends of boundary curves which are
not closed. In the next subsection, we will give details of the AeGVF model and further
discuss the effect of the advection term ∇ f ·∇V .
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3.2 Details about the AeGVF model

To complete the AeGVF model (3.3), we begin with the following simple setting:

µc>0, µp=0, Ec=∅. (3.5)

In other words, we add the advection term ∇ f ·∇V in the whole domain and then use
the parameter µc to control its strength. Numerical results of a simple test are shown in
Fig. 1 for three different values of µc. From the numerical results, one can find that, as
µc increases, the missing edges are getting recovered, especially the right missing edge
which is located very close to a strong edge. Although the recovery can be made by
increasing the strength of advection, there are two undesirable results that should be
noticed. First, as µc is getting larger, the force fields near the corner points may gradually
be destroyed. Second, for each missing edge, the attractive forces from the two endpoints
may sometimes be cancelled out at the midpoint, making the snake be pulled out to the
strong edges along a horizontal line, see Fig. 1(e).

To deal with the first undesirable result, we use the Harris corner detector with the
MATLAB built-in command corner( f ,’SensitivityFactor’,0.2) to find corner points, where f
is the given edge map, and then remove the advection effect at these corner points. The
collection of these corner points is denoted by the set Ec. In fact, the gradient of a two-
variable function is determined uniquely provided that the function is differentiable. So,
theoretically, ∇ f is not well defined at corner points of an image. For this reason, we
should exclude the advection effect at image corners.

To deal with the second undesirable result, we use the MATLAB built-in command
bwmorph(skelImage, ’Endpoints’) to find endpoints of edges and then the advection terms
are randomly imposed on half pixels in the 3×3-pixel neighborhood of each endpoint to
disturb the symmetry of the attractive forces. The randomness used here is a discrete uni-
form distribution which is especially good for dealing with symmetric structures near the
endpoints. The collection of those random pixels to impose advection terms is denoted
by the set Ep.

With these two auxiliary sets Ec and Ep, the improvement can be clearly observed in
Example 4.1 below, where the missing edges are recovered completely.

3.3 Numerical implementation of snake models

In this subsection, let us describe some preliminaries needed in the numerical implemen-
tations of various snake models.

• We use the explicit forward Euler difference scheme in time and the centered dif-
ference scheme in space, so the models with the weighting function g must satisfy
the stability condition [33],

∆t≤
∆x∆y

4gmax
, (3.6)
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(a) initialization (b) edge map

(c) µc=0.5 (d) µc=2 (e) µc=5

Figure 1: Numerical results of the AeGVF model for three different µc with µp=0, Ec=∅ in all cases, where the
top row illustrates the initialization and edge map; the second row to the last row show the evolution processes,
the segmentation results, the external force fields of blue and green zoomed-in regions, respectively.

where ∆x and ∆y are spatial mesh sizes in x- and y-direction, respectively, and gmax

is the maximum value of g. For all examples in Section 4 below, we always take
∆x=∆y=1 and set ∆t=0.25 for all improved GVF models.
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• Following the idea that the filter Gσ can helpfully suppress the influence of noise
[30], we therefore use Gσ∗V instead of V in each time step for all improved GVF
models, where σ depends on the noise level of an image. For a noise-free image, σ
can be taken very small. When the noise level is getting higher, σ should be taken
larger. Taking the AeGVF as an example, in each time step we will approximate

V
(m) by using the centered difference scheme,











































V
(m)=Gσ∗V

(m−1)+∆tg(|∇ f |)(Gσ ∗V
(m−1))NN

−∆t
(

µc
χ

Ω\Ec
+µp

χ
Ep

)

∇ f ·∇(Gσ∗V
(m−1))

−∆th(|∇ f |)
(

Gσ∗V
(m−1)−∇ f

)

in Ω, for m≥1,

V
(0)=∇ f in Ω,

∇V
(m) ·n=0 on ∂Ω, for m≥1.

(3.7)

• Finally, we remark that to accurately stop the snake at the edge locations, intuitively,
there should be no force fields on edges. So we remove all the force fields on edges
for synthetic images in our AeGVF snake, that is, we substitute Vχ

{ f=0} for V and
then solve the following modified snake model for synthetic images:

∂z

∂t
(s,t)−αzss(s,t)+βzssss(s,t)−V χ

{ f=0}=0, (s,t)∈ (0,1)×(0,T], (3.8)

with suitable initial contour and boundary conditions for 0≤ t≤T.

4 Numerical experiments

In this section, we are going to compare the performance of various improved GVF mod-
els, including the GGVF, NGVF, NBGVF, ADF and the newly proposed AeGVF, on sev-
eral desirable abilities such as missing edge recovery, convergence for LTIs, prevention of
weak-edge leakage and noise robustness for both synthetic and real images. Numerical
results will demonstrate the high performance of the newly proposed AeGVF model. We
remark that all the edge maps f are normalized to [0,1], and the parameters α, β and σ
will be described clearly in each example.

Example 4.1 (Missing edge recovery). In this example, we consider two images respec-
tively with U-shaped and rectangle objects to study the efficiency of the proposed AeGVF
snake for recovering missing edges. We take the edge map f (x,y)=−I(x,y), where I(x,y)
is the given image.

(i) For the U-shaped image, we set α= β= 0.5, and σ= 0.15. Fig. 2 shows that all the
test models are able to recover the missing edge very well, and the AeGVF snake
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(a) initialization (b) edge map

(c) GGVF (d) NGVF (e) NBGVF (f) ADF (g) AeGVF

Figure 2: Numerical results of some improved GVF models for Example 4.1, where the top row illustrates the
initialization and edge map; the second row to the last row show the evolution processes, the external force
fields, the segmentation results and the zoomed-in regions, respectively. In all improved models, we set ∆t=0.25,
σ=0.15, and k=0.01 in the weighting function g. Column (c) shows the results of the GGVF snake; (d) is for
the NGVF snake with µ=0.2; (e) is for the NBGVF snake with µ=0.5; (f) is for the ADF snake; (g) is for the
AeGVF snake with µc=µp =0.01.

locates the boundary perfectly; see the zoomed-in regions in Fig. 2. In other words,
removing all the force fields on edges for the line-drawing image can make snakes
stay on edges accurately.
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(a) initialization (b) edge map

(c) GGVF (d) NGVF (e) NBGVF (f) ADF (g) AeGVF

Figure 3: Numerical results of some improved GVF models for Example 4.1, where the top row illustrates the
initialization and edge map; the second row to the last row show the evolution processes, the segmentation
results, the external force fields in the blue zoomed-in regions and the segmentation results in the green zoomed-
in regions, respectively. In all improved models, we set ∆t=0.25, σ=0.01, and k=0.01 in the weighting function
g. Column (c) shows the results of the GGVF snake; (d) is for the NGVF snake with µ = 0.5; (e) is for the
NBGVF snake with µ=0.5; (f) is for the ADF snake; (g) is for the AeGVF snake with µc=µp =2.

(ii) For the image of a rectangle object, we set α = β = 0.5, and σ = 0.15. In this case,
we put two strong edges nearby. The distance between the left strong edge and the
rectangle is of 25-pixel width, and the other is of 19-pixel width. The segmentation
results are shown in Fig. 3. It can be seen that the AeGVF snake attaches to the
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object very well. Not only the sharp corners are built correctly, but also the missing
parts are reconstructed robustly even though the strong edges are very close to the
missing ones. With a closer observation, one can find that the evolution process
of the AeGVF is smooth near the missing edges without struggling too much. In
addition, the force fields (see the blue zoomed-in regions in Fig. 3) clearly show
that the attractive forces from the up and down endpoints are more concentrated
than those of the other snakes such that the gradient vectors along the horizontal
line can be cut off. This phenomenon demonstrates how the advection effects can
indeed improve the ability of recovering missing edges.

In summary, these numerical results show that the AeGVF snake has much better perfor-
mance than the other snakes in terms of recovering the missing parts.

Example 4.2 (Convergence to LTIs). In this example, we consider a narrow and deep
concavity which is 3 pixels in width and 150 pixels in depth and it is often used to test
the convergence performance of an improved snake for LTIs [30]. The same concavity
with inhomogeneous intensity and missing edges are also considered to conduct more
delicate comparisons. Again, in this example, we take the edge map f (x,y)=−I(x,y).

(i) First, we consider homogeneous edge with intensity zero, and there is no missing
edge imposed. In this case, we set α= 0.1, β= 0.06 and σ = 0.15. The experimen-
tal results are given in Fig. 4, which shows that both the ADF and AeGVF snakes
successfully converge to the bottom of LTI, while the others stop at the entrance.
Observing further the force fields in the zoomed-in regions, one can find that the
gradient vectors of both the ADF and AeGVF point straight downward to the bot-
tom of the concavity, while the others do not. Finally, we note that the AeGVF snake
attaches to the boundary much better than the ADF snake.

(ii) Second, to further distinguish the convergence properties of the ADF and AeGVF
snakes, we consider another two cases of inhomogeneous edge intensity with bot-
tom edges partly and fully removed. In both two cases, we set α=0.1, β=0.2 and
σ=0.15. The experimental results are given in Fig. 5. From Fig. 5(c) and Fig. 5(d),
we can find that the AeGVF snake correctly converges to the target boundary with
450 iterations for generating force fields, but the ADF snake can not reach a similar
result even with 550 iterations. In the second case, we additionally remove the bot-
tom edge of the concavity, see Fig. 5(b), which signifies that the downward vectors
can not come from the bottom edge but should come from the entrance instead.
From Fig. 5(e), one can see that the ADF produces force fields pointing upward,
which stop the snake moving into the concavity. However, the AeGVF preserves
the symmetry of the force fields to keep the force propagation going downward,
which makes the snake converge to the desired object almost perfectly. So, the pro-
posed AeGVF snake may converge faster and more robustly than the ADF snake
for entering a narrow and deep concavity.
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(a) initialization (b) edge map

(c) GGVF (d) NGVF (e) NBGVF (f) ADF (g) AeGVF

Figure 4: Numerical results of some improved GVF models for Example 4.2, where the top row illustrates the
initialization and edge map; the second row to the last row show the evolution processes, the segmentation
results, and the external force fields in the blue zoomed-in regions, respectively. In all improved models, we set
∆t= 0.25 and σ= 0.15. Column (c) shows the results of the GGVF snake with k= 0.005; (d) is for the NGVF
snake with µ=0.2; (e) is for the NBGVF snake with k=0.01 and µ=0.2; (f) is for the ADF snake with k=0.005;
(g) is for the AeGVF snake with k=0.01, µc=0.01 and µp =0.

Example 4.3 (Preventing weak-edge leakage). In this example, we consider four circular-
shaped objects which are commonly used to test the ability of a snake for preventing
weak-edge leakage. In this example, we take the edge map f (x,y)= |∇I(x,y)|.

(i) The first two images possess small blurry regions around the upper left boundary
[27, 30, 31], see Fig. 6(a)-(b). The image intensity on the blurry regions changes so
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(a) initialization (b) initialization

(c) ADF-550 (d) AeGVF-450 (e) ADF-800 (f) AeGVF-500

Figure 5: Numerical results of the ADF and AeGVF models for Example 4.2, where the top row illustrates
the initializations; the second row to the last row show the evolution processes, the segmentation results, and
the external force fields in the blue zoomed-in regions, respectively. The difference between (a) and (b) comes
from the existence of the bottom edge of the concavity. Columns (c) and (d) show the results of the ADF and
AeGVF snakes for the case (a), respectively. The dash sign is followed by the iteration numbers for generating
force fields. Columns (e) and (f) are for the case (b). In both cases, ∆t=0.25, σ=0.15, k=0.005 for the ADF
snake, and k=0.01, µc=µp =2 for the AeGVF snake.

slowly that the corresponding edge maps will not have clear boundary indication
such that weak-edge leakage may occur there. In both cases, the parameters are
chosen as α=0.5, β=0.5, ∆t=0.25 and σ=0.01. The experimental results show that
the NGVF snake leaks from the weak edges in both cases, while the GGVF snake
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(a) initialization (b) initialization

(c) GGVF (d) NGVF (e) NBGVF (f) ADF (g) AeGVF

Figure 6: Numerical results of some improved GVF models for Example 4.3, where the top row illustrates the
initializations for each tested image; the second row and the fourth row show the evolution processes of each
improved snake for the two images, respectively; the third row and the fifth row are the external force fields
near the blurry regions. The green curves represent the segmentation results. In all improved models, we set
∆t=0.25 and σ=0,01 for (a) and (b). Column (c) shows the results of the GGVF snake with k=0.02; (d) is
for the NGVF snake with µ= 0.2; (e) is for the NBGVF snake with k= 0.001 and µ= 0.2; (f) is for the ADF
snake with k=0.02; (g) is for the AeGVF snake with k=0.01, µc=2, µp =0.

preserve the weak edge in the first case. In contrast to the strenuous preservation
of the GGVF snake, it can be observed from the evolution processes and the force
fields that the NBGVF, ADF, and AeGVF snakes all preserve weak edges easily and
have very good performances even when a strong edge is nearby in the second case.



P.-W. Hsieh, P.-C. Shao and S.-Y. Yang / Commun. Comput. Phys., 26 (2019), pp. 206-232 225

(a) initialization (b) initialization

(c) GGVF (d) NGVF (e) NBGVF (f) ADF (g) AeGVF

Figure 7: Numerical results of some improved GVF models for Example 4.3, where the top row illustrates the
initializations for each tested image; the second row and the fourth row show the evolution processes of each
improved snake for the two images; the third row and the fifth row are the segmentation results. In all improved
models, we set ∆t=0.25 and σ=1 and 0.01 for (a) and (b), respectively. Column (c) shows the results of the
GGVF snake with k=0.05 and 0.8 for (a) and (b), respectively; (d) is for the NGVF snake with µ=0.2 and 0.8;
(e) is for the NBGVF snake with k=0.02, µ=0.2 and 0.8; (f) is for the ADF snake with k=0.05 and 0.8; (g)
is for the AeGVF snake with k=0.02, µc=2, µp=0.

(ii) We also consider another two images with gradient colors [3, 30], see Fig. 7(a)-(b).
The parameters are set as α=0.5, β=0.5, and ∆t=0.25 for both cases, σ=1 for the
first case (a), and σ = 0.01 for the second case (b). The lower left part of the first
image is relatively bright so the boundary is unclear. The segmentation results are
shown in Fig. 7. The NGVF and NBGVF snakes converge to almost the same wrong
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boundary while the others converge correctly. The second image possesses shady
areas on the top and bottom of the circular object. The experimental results show
that the AeGVF snake converges to an acceptable boundary shape while the others
converge falsely to apple-shaped boundaries. These two test images demonstrate
the good performance of the AeGVF snake for protecting weak edges caused by
inhomogeneous illumination.

Example 4.4 (Testing on noisy images). Active-contour snake is sometimes sensitive to
noise, so we are going to study the noise robustness of the AeGVF snake in this example.

(i) First, we consider three different types of noises on the U-shaped object [30, 32],
including the salt-and-pepper noise, speckle noise and Gaussian noise. The noises
are created by MATLAB built-in functions imnoise(I, ’salt & pepper’, 0.08), imnoise(I,
’speckle’, 0.08) and imnoise(I, ’gaussian’, 0.0001). The experimental comparisons are
shown in Fig. 8. In all cases, we set α=0.5, β=0.5, and ∆t=0.25. The edge map is
taken as f (x,y)=−I(x,y) with no filter here. The parameter σ for different kinds of
noise and improved models are described in the caption of Fig. 8. Comparing the
evolution processes, one can observe that the GGVF, NGVF and NBGVF snakes are
more sensitive to the noises even though the noises are only with low percentages.
In contrast, both the ADF and AeGVF snakes achieve satisfactory segmentation
results, and there is a notable difference in the evolution processes between the two
snakes. The AeGVF snake seems more stable in the evolution than the ADF snake
for the speckle noise case, and is comparable to the ADF snake for the other cases.

(ii) To further examine the noise sensitivity of the AeGVF snake, we added much
stronger impulse noises to a harmonic curve [31, 33] parametrized by

C(r,t)=(rcost,rsint), (4.1)

where r=1+0.23cos4t, t∈ [0,2π]. The experimental results for different noise den-
sities are shown in Fig. 9. In all cases, we set α= 0.5, β = 0.5, and ∆t = 0.25. The
edge map is f (x,y) = |∇(Gσf

∗ I(x,y))| with σf = 2. The various noise densities of
salt-and-pepper noise are presented in the caption of Fig. 9. The results show that
the performance of the AeGVF snake is quite robust. Although the segmentation
result may be a little inaccurate when the noise density is bigger than 50%, it is still
acceptable since the use of filter to smooth noise for the edge map may blur the
boundary so that the snake deviates the correct boundary position of the object in
an unavoidable way.

Example 4.5 (A strategy for choosing µc and µp). In this example, we give a strategy to
choose appropriate values for the nonnegative parameters µc and µp. From the discus-
sion in Subsection 3.1 and the numerical results reported in Examples 4.1–4.4, we know
that the advection effect is mainly used to preserve image edges or sharp structures. In
other words, if our purpose is to (i) protect a weak or missing edge from being passed
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(a) salt-and-pepper (b) speckle (c) Gaussian

(d) GGVF (e) NGVF (f) NBGVF (g) ADF (h) AeGVF

Figure 8: Numerical results of some improved GVF models for Example 4.4, where three types of noises (salt-
and-pepper, speckle, Gaussian) on the U-shaped image are listed in (a)–(c). In all improved models, we set
∆t=0.25. Column (d) shows the results of the GGVF snake with (k,σ)= (0.01,1.5), (1,1), and (0.5,1) for the
top (salt-and-pepper), middle (speckle) and down (Gaussian) cases, respectively. Similarly, (e) is for the NGVF
snake with (µ,σ) = (0.2,0.6), (0.2,0.5), (0.2,0.5); (f) is for the NBGVF snake with (µ,k,σ) = (0.2,0.01,0.6),
(0.2,0.5,0.5), (0.2, 0.2, 0.5); (g) is for the ADF snake with (k,σ) = (0.01,1.5), (2,1), (0.5,1); (h) is for the
AeGVF snake with µp =0, (µc,k,σ)=(2,0.01,1.5), (5,0.5,1), (2,0.2,1).

through by snakes (cf. Figs. 3, 5, 6, 7); or (ii) keep the edge strength from being destroyed
by a large σ (cf. Fig. 7, 8, 9), then we may choose a relatively large value for µc and µp. On
the other hand, if there is no such necessity (cf. Figs. 2, 4), we may choose a smaller value
for µc and µp. Indeed, the choices of µc and µp in Examples 4.1–4.4 obey such a principle
and the numerical results are rather satisfactory. Moreover, we also examine the sensi-
tivity of the AeGVF model with respect to the advection parameters for the images that
meet (i) or (ii); see Fig. 10. From the numerical results depicted in Fig. 10, we can find
that the image with a long and thin concavity has a smaller range of values for µc and
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(a) original image (b) 20% (c) 30%

(d) 40% (e) 50% (f) 60%

Figure 9: Numerical results of the AeGVF model for Example 4.4, where a simple harmonic curve is polluted
with various levels of salt-and-pepper noises. (a) is the original image; (b)–(f) are the evolution processes of the
AeGVF snake for noise densities 20%–60%. The corresponding settings for (k,σ) are taken as (0.1,2), (0.1,2),
(0.05,2), (0.03,2), and (0.02,4.5), respectively. In all cases, ∆t= 0.25, µp = 0 and µc = 2. The yellow curves
depict the segmentation results.

µp (about 0.8∼ 2.8) that makes the snake converge to the object successfully. However,
overall, the AeGVF snake is rather robust with respect to the advection parameters µc

and µp.

Finally, we close this section by applying the newly proposed AeGVF snake to some
real images, including ’human’s cardiac CT image’, ’airplane’, ’cardiac MRI’, ’monkey’,
’human’s lung CT image’, ’hand’, ’brain CT image’, ’MRI of bladder’, ’ultrasound image’,
and ’brain tumor’. The numerical results are depicted in Fig. 11 in yellow. The segmenta-
tion results are very impressive and all these show the promising of the proposed AeGVF
snake.

5 Summary and conclusions

In this paper, we have proposed a new GVF model with advection enhancement, called
AeGVF, for the active-contour image segmentation. This model is inspired by the func-
tional derivative of an adaptive TV regularizer whose minimizer is expected to be able to
preserve the desired object boundary effectively. The most distinguished feature of this
newly proposed model is that it is equipped with an advection term ∇ f ·∇V in solving
the external force field V . To the authors’ knowledge, such an advection effect has never
been studied in the literature. With the advection enhancement to the gradient vectors,
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(a) initializations

µ
c
 = µ

p
 = 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

µ
c
 = µ

p
 = 0.5 1.5 2.5 3.5 4.5

µ
p
 = 0, µ

c
 = 2 4 6 8 10

Figure 10: Numerical results of the AeGVF model for Example 4.5. The top row illustrates the initializations for
each tested image. In all cases, ∆t=0.25. From the second row to the bottom row, we set (k,σ)=(0.01,0.15),
(0.01,0.01), and (0,5,1), respectively. The blue curves depict the segmentation results of the AeGVF snake with
different advection parameters.

the AeGVF snake is expected to be able to recover missing edges, to converge to a nar-
row and deep concavity, and to preserve weak edges very well. Indeed, the numerical
results show that the AeGVF snake model is not only comparable to several improved
GVF snake models such as GGVF, NGVF, NBGVF and ADF, it seems having much better
segmentation quality than the others for most of the test images. More specifically, the
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Figure 11: The segmentation results of the AeGVF snake for some real images.

AeGVF has the best performance and distinguished results in recovering missing edges
and in converging to the LTIs with weak edges. Moreover, the AeGVF active-contour
model performs very satisfactorily for several medical and natural images. Finally, we
remark that a rigorous qualitative analysis of the newly proposed AeGVF model should
be very interesting, and this deserves further study.
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