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Abstract. This article is devoted to studying the application of the weak Galerkin
(WG) finite element method to the elliptic eigenvalue problem with an emphasis on
obtaining lower bounds. The WG method uses discontinuous polynomials on polygo-
nal or polyhedral finite element partitions. The non-conforming finite element space of
the WG method is the key of the lower bound property. It also makes the WG method
more robust and flexible in solving eigenvalue problems. We demonstrate that the WG
method can achieve arbitrary high convergence order. This is in contrast with existing
nonconforming finite element methods which can provide lower bound approxima-
tions by linear finite elements. Numerical results are presented to demonstrate the
efficiency and accuracy of the theoretical results.
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1 Introduction

The eigenvalue problems of partial differential equations arising from the scientific re-
search and engineering have received more and more attentions recently [6, 9, 14, 28].
Among the PDE eigenvalue problems, the elliptic eigenvalues are closely related to
Poincaré constant in the Sobolev theory [19, 34], and play an important role in the spec-
tral distribution of nonlinear equations [33]. In physical applications, the eigenvalues
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often have close relationship with vibrations, especially the sympathetic vibration phe-
nomenon. Most elastic bodies vibrate at certain frequency and respond to external vi-
brations. Details of these applications can be found in [7, 15, 20]. In addition to the
above mentioned applications, the elliptic type eigenvalue problems are also useful in
many other areas, such as plasma physics in fusion experiments and astrophysics, the
petroleum reservoir simulation, the linear stability of flows in fluid mechanics, and elec-
tronic band structure calculations, etc. (see [1, 4, 14, 21] and references therein).

There have been numerous efforts in finding numerical solutions of elliptic eigen-
value problems. The finite element method is the most studied method (see, e.g.,
[3, 4, 6, 16, 17]). Due to the Rayleigh quotient and the minimum-maximum principle, any
standard conforming finite element method [13, 35] can only provide upper bounds for
the eigenvalues. However, when the eigenvalues are all real numbers, it is desirable to
obtain both upper bounds and lower bounds [27].

There are mainly two approaches to find lower bounds of eigenvalues. The first ap-
proach is a post-processing procedure [22,26]. The main drawback of this approach is that
an auxiliary problem must be solved and the order of convergence is reduced as a result.
The second approach is the construction of special nonconforming finite elements to ob-
tain lower bounds. In [23], three types of nonconforming elements by the finite element
error expansion technique were studied to provide lower bounds of the eigenvalues. We
refer interested readers to [5, 25] for additional studies on other nonconforming finite
element approaches in obtaining lower bounds for eigenvalues. There are mainly two
difficulties in the numerical approximation of eigenvalue problems with nonconforming
FEM. One is the construction of high order finite element spaces which give high order
numerical solutions. The other difficulty is the construction of finite element spaces for
three dimensional problems.

The goal of this paper is to overcome the aforementioned difficulties using the weak
Galerkin method. The WG method was first proposed in [37], and further developed
in [8, 29, 31, 36, 38, 44, 45, 47, 48]. Recently, the weak Galerkin method has been extended
to elliptic interface problems [10], linear hyperbolic equations [43], Navier-Stokes equa-
tions [46, 49], Helmholtz equations [11, 32], and discrete maximum principles [18, 39]. In
the WG method, differential operators are approximated by weak forms as distributions
over a set of generalized functions. It has been demonstrated that the WG method is
highly flexible and robust as a numerical technique employing discontinuous piecewise
polynomials on polygonal or polyhedral finite element partitions. As a class of noncon-
forming finite element method, the finite element space of WG, for the same degree of
polynomial, is larger than that of the standard finite element methods, which makes it
possible to obtain lower bounds due to the Rayleigh quotient. Comparing with other
nonconforming finite element for eigenvalue problems, our approach of solving elliptic
eigenvalue problems with the WG method has the following advantages, which consti-
tute the main contributions of this paper.

• Our method is capable of obtaining lower bounds with higher order of accuracy.


