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Abstract. Due to its computational efficiency, high-order finite difference (FD) method
is attractive, but the difficulty of treating boundary hampers the practical applica-
tion in complex flow simulation. In this work, we propose a novel high-order FD
scheme based on discontinuous Galerkin (DG) boundary treatment (FDbDG) where a
DG method based on variational principle is applied to provide the flow properties in
the vicinity of the boundary with desirable derivative information in time. In order
to carefully combine the finite element and finite difference, Hermite weighted essen-
tially non-oscillatory (HWENO) interpolation is adopted to build the HWENO flux
for interior FD scheme and HWENO reconstruction is used to construct the degrees
of freedom in the DG flux for boundary variational method. Several typical test cases
are selected to evaluate the treatment for FD boundary. Numerical results show the
proposed FDbDG method can reach arbitrary order of accuracy including boundary
region with non-essentially oscillations.
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1 Introduction

Recently, high-order numerical methods (third-order and above) with low numerical dif-
fusion and dispersion errors have been widely developed and applied to resolve complex
fluid structures in a variety of applications. Finite difference (FD) type schemes, adopted
to resolve the conservation laws in differential form with one degree of freedom (DOF) in
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each cell, are generally considered as highly efficient and easily achieve high-order accu-
racy. Furthermore, FD type schemes designed on simpler uniform structured mesh can
obtain high parallel efficiency on a large-scale computer. Above features make high-order
FD method still very attractive.

Unfortunately, a high-order FD regime suffers several major challenges in resolving
conservation laws on complex geometry.

Interpolation of high-order accuracy suffers oscillations near a discontinuity called

Gibbs phenomena. A lot of research work has been done to eliminate oscillations. The
Essentially Non-Oscillatory (ENO) idea was firstly proposed [1] to enhance stability.
In [2–4], the Weighted ENO (WENO) schemes was developed, using a convex combi-
nation of all candidate stencils instead of just one as in the original ENO, to obtain higher
order accuracy. In [5–7], a more compact Hermite WENO (HWENO) idea was proposed
and employed in FD type schemes. The HWENO schemes adopted smaller stencils to
obtain high-order accuracy. Nonlinear weighted compact (WCNS) methods based on
compact high-order nonlinear schemes were introduced in [8–10] and also showed good
performance for discontinuity capture.

Lack of abundant derivative information near the boundary causes difficulty in ob-

taining uniform high-order accuracy for problems involving complex geometry. There
have been many successful numerical methods to address the challenge. One indirect ap-
proach is the immersed boundary (IB) method, which was introduced in [11]. IB method
used a forcing function on physical boundaries to make a modification of origin par-
tial differential equations. The method had been widely used to solve incompressible
flows and fluid-structure problems on moving geometries. One can refer to the survey
article [12] for more details. Usually, a direct approach is to obtain the values at several
ghost points near the boundary by extrapolation. In fact, the key is that the boundary con-
ditions imposed on physical boundaries are short of abundant derivative information to
obtain high-order accuracy. A second order accurate embedded boundary method for the
wave equation was developed in [13–15]. The idea was extended to solve conservation
laws where slope limiters were adopted to avoid oscillations in [16]. Of course, for out-
flow boundary, the extrapolation can meet the upwind and physical principles, and the
WENO extrapolation may be adopted to acquire higher order accuracy with enhanced
stability. However, it can cause instability when used on an inflow boundary, solid wall
boundary, etc., where the more abundant information should be imposed on physical
boundary. Huang et al. developed a Lax-Wendroff (LW) type boundary condition for
a third-order finite difference method in [17]. Recently, an inverse Lax-Wendroff (ILW)
technique was developed by using the idea for time dependent problems in [18]. The
main idea is to convert time derivatives and tangential derivatives to normal derivatives
by repeatedly using the PDEs on the inflow boundary and to get the derivative infor-
mation and derive ghost point values by Taylor expansion. WENO type extrapolation
was adopted to handle the strong discontinuities to prevent the undershoot and over-
shoot. However, the algebra of the ILW procedure was very heavy for two-dimensional


