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Abstract. The combination of high-dimensionality and disparity of time scales en-
countered in many problems in computational physics has motivated the develop-
ment of coarse-grained (CG) models. In this paper, we advocate the paradigm of data-
driven discovery for extracting governing equations by employing fine-scale simu-
lation data. In particular, we cast the coarse-graining process under a probabilistic
state-space model where the transition law dictates the evolution of the CG state vari-
ables and the emission law the coarse-to-fine map. The directed probabilistic graphical
model implied, suggests that given values for the fine-grained (FG) variables, proba-
bilistic inference tools must be employed to identify the corresponding values for the
CG states and to that end, we employ Stochastic Variational Inference. We advocate
a sparse Bayesian learning perspective which avoids overfitting and reveals the most
salient features in the CG evolution law. The formulation adopted enables the quantifi-
cation of a crucial, and often neglected, component in the CG process, i.e. the predic-
tive uncertainty due to information loss. Furthermore, it is capable of reconstructing
the evolution of the full, fine-scale system. We demonstrate the efficacy of the proposed
framework in high-dimensional systems of random walkers.
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1 Introduction

The present paper is concerned with the discovery of data-driven, dynamic, stochastic
coarse-grained models from fine-scale simulations with a view of advancing multiscale
modeling. Many problems in science and engineering are modeled by high-dimensional
systems of deterministic or stochastic, (non)linear, microscopic evolution laws (e.g. ODEs).
Several such examples are encountered in quantum mechanical models [1], in the atom-
istic simulation of materials [2], in complex flows [3–5], and in agent-based models [6].

∗Corresponding author. Email addresses: p.s.koutsourelakis@tum.de (P. S. Koutsourelakis),
lukas.felsberger@cern.ch (L. Felsberger)

http://www.global-sci.com/ 1259 c©2019 Global-Science Press



1260 L. Felsberger and P. S. Koutsourelakis / Commun. Comput. Phys., 25 (2019), pp. 1259-1301

Their solution is generally dominated by the smaller time scales involved even though
the outputs of interest might pertain to time scales that are greater by several orders of
magnitude [7]. The combination of high-dimensionality and disparity of time scales has
motivated the development of coarse-grained formulations. These aim at constructing a
much lower-dimensional model that is practical to integrate in time and can adequately
predict the outputs of interest over the time scales of interest. The literature on this topic
is vast and many categorizations are possible. This paper focuses on data-driven strate-
gies [8–18] where (short) simulations of the original, fine-grained (FG) or full-order sys-
tem of equations are used in order to learn (or infer) the right coarse-grained (CG) model.
This is consistent with the emergence of data-driven discovery, commonly referred to as
the fourth paradigm in science [19]. Extracting governing equations from data is a cen-
tral challenge in a wide variety of physical and engineering sciences as in climate sci-
ence, neuroscience, ecology, finance, and epidemiology, where models (or closures) often
remain elusive [20–23].

The challenge in multiscale physical systems such as those encountered in non-
equilibrium statistical mechanics [24], is even greater as apart from the identification of
an effective model, it is crucial to discover a good set of CG state variables [25]. The lat-
ter problem has been traditionally addressed separately from the construction of the CG
model, using dimensionality reduction techniques, (e.g. [26]) but in this work we offer a
holistic treatment.

The starting point of all (to the best of our knowledge) CG schemes is the specifica-
tion of a set of coarse (or reduced) state variables with respect to which a CG model is
prescribed/found. These variables are selected on the basis of the analysis objectives, or
because they are known to be “slow” either through physical insight or using rigorous
statistical learning tools (e.g. dimensionality reduction). The specification of these coarse
variables is generally done through a projection (or restriction), many-to-one operator
from the fine-scale variables to the coarse. For problems exhibiting time-scale separation
and when the CG state variables identified correspond to slowly-evolving features, it has
been established that Markovian CG models are suitable and several numerical strate-
gies have proven successful [27, 28]. In the absence of scale separation however, mem-
ory effects (dissipation) and thermal noise play an important role. The Mori-Zwanzig
(MZ) formalism which was originally developed in the context of irreversible statisti-
cal mechanics [29, 30] but has been extended to general systems of ODEs (e.g. [31–34])
provides a rigorous mathematical foundation. Setting aside the largely unsolved compu-
tational challenges associated with finding the terms in the Generalized Langevin Equa-
tion (GLE) [35, 36] prescribed by MZ, it is in principle a perfect scheme, i.e. it is capable
of capturing exactly the dynamics of the state variables that are resolved and with re-
spect to which a closed system of equations is written. The solution of non-Markovian
system of equations (due to the memory term) poses itself several difficulties as it ne-
cessitates storing the history of the CG variables. Interestingly, in many instances, this
non-Markovian system can be mapped onto an, albeit higher-dimensional, Markovian,
system with additional degrees of freedom corresponding to auxiliary or extended state


