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Abstract. A local radial basis function method (LRBF) is applied for the solution of
boundary value problems in annular domains governed by the Poisson equation, the
inhomogeneous biharmonic equation and the inhomogeneous Cauchy-Navier equa-
tions of elasticity. By appropriately choosing the collocation points we obtain linear
systems in which the coefficient matrices possess block sparse circulant structures and
which can be solved efficiently using matrix decomposition algorithms (MDAs) and
fast Fourier transforms (FFTs). The MDAs used are appropriately modified to take
into account the sparsity of the arrays involved in the discretization. The leave-one-
out cross validation (LOOCV) algorithm is employed to obtain a suitable value for the
shape parameter in the radial basis functions (RBFs) used. The selection of the nearest
centres for each local influence domain is carried out using a modification of the kdtree
algorithm. In several numerical experiments, it is demonstrated that the proposed al-
gorithm is both accurate and capable of solving large scale problems.
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1 Introduction

The local radial basis function (LRBF) method was first discussed in [30] and then inde-
pendently introduced in [28, 31, 32, 34] introduced, see also [21]. In contrast to the tradi-
tional meshed based methods [1,2], LRBF is a meshless method which may be viewed as
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a special case of the Kansa method [15]. Meshless methods are well-suited for the numer-
ical solution of boundary and initial value problems in two and three dimensions. Un-
like the global Kansa-radial basis function (RBF) method [6–8] which leads to dense and
poorly conditioned linear systems, the LRBF method leads to sparse systems. In recent
years, the LRBF method has been successfully applied to a large variety of problems in
science and engineering. No special treatment for pre-conditioning is required [22,23,33].

Efficient global Kansa-RBF algorithms for problems in geometries possessing radial
symmetry were proposed in [18–20, 25]. These algorithms are matrix decomposition algo-
rithms (MDAs) [4, 5] and make use of fast Fourier transforms (FFTs). This allows us to
decompose a large system into a series of small systems which can be solved efficiently
and thus the issue of ill-conditioning occurring for large dense matrices is resolved. How-
ever, when the number of collocation points is sufficiently large, the rank of the smaller
decomposed matrices could still be large. In such a case, the memory space required to
store these (not so small) matrices as well as the computational cost are still challeng-
ing issues. Furthermore, when the rank of the decomposed matrices becomes larger, the
computational cost of finding a suitable shape parameter using LOOCV which is adopted
in [25] increases rapidly. To alleviate these difficulties for very large-scale problems, a lo-
calized RBF method can be considered so that the decomposed matrices are sparse. Our
goal in this work is to formulate the MDAs developed in [25] for the global Kansa-RBF
method, for the LRBF method. As will be demonstrated, this leads to very efficient algo-
rithms which exploit both the structure and the sparsity of the matrices involved, and thus
to substantial savings in both computer time and memory. The nearest centres for each
local influence domain in the LRBF method are selected using a modification of the kdtree
algorithm [29]. While the emphasis of this paper is not on the determination of the op-
timal value of the shape parameter, we use the leave-one-out cross validation (LOOCV)
algorithm [27] as a tool for determining appropriate values of the shape parameter which
yield to satisfactorily accurate results. In the numerical examples examined in this paper,
we shall focus on the use of the normalized multiquadric (MQ) while stressing that the
proposed algorithms are applicable to other RBFs.

The paper is organized as follows. In Section 2 we present the three types of bound-
ary value problems to be considered in the paper, namely Poisson, biharmonic and linear
elasticity problems. Some important implementational issues related to the proposed
technique are addressed in Section 3. A description of the LRBF method and correspond-
ing MDA for Poisson problems is provided in Section 4 and its extension to biharmonic
problems in Section 5. The LRBF method and corresponding MDA for linear elasticity
problems is presented in Section 6. In Section 7 the proposed method is applied to sev-
eral numerical examples and the results analyzed. Finally, some conclusions and ideas
for future work are given in Section 8.

2 The problems

In all problems considered the domain Ω is the annulus


