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Abstract. Using the idea of weighted and shifted differences, we propose a novel fi-
nite difference formula with second-order accuracy for the tempered fractional deriva-
tives. For tempered fractional diffusion equations, the proposed finite difference for-
mula yields an unconditionally stable scheme when an implicit Euler method is used.
For the numerical simulation and as an application, we take the CGMYe model as an
example. The numerical experiments show that second-order accuracy is achieved for
both European and American options.
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1 Introduction

Fractional derivatives were invented by Leibnitz soon after the integer order derivatives,
but have been playing more and more important roles in recent decades. They are now
applied to model a wide variety of problems, including in mechanics (theory of viscoelas-
ticity and viscoplasticity), (bio-)chemistry (modeling of polymers and proteins), electrical
engineering (transmission of ultrasound waves), and medicine (modeling of human tis-
sue under mechanical loads), etc.

The finite difference method is the most commonly used method in solving the frac-
tional partial differential equation (FPDE) problems. The tempered Riemann–Liouville
fractional derivative can be discretized by the standard Grünwald–Letnikov formula [20]
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with only the first-order accuracy, but the difference scheme based on the Grünwald–
Letnikov formula for time dependent problems is unstable [18]. To overcome this prob-
lem, Sabzikar et al. first proposed the shifted Grünwald–Letnikov formula in [21] to ap-
proximate the tempered fractional advection-dispersion flow equations, which is stable
with first-order accuracy in space. In the present work, we propose a stable and more
flexible approach to approximate the tempered Riemann–Liouville fractional derivatives
via the weighted average of distinct shifted Grünwald–Letnikov formulas, and to achieve
second-order accuracy. The idea of this method is under inspiration of the method used
by Tian et al. in [27].

For the numerical experiments and as an application of the proposed method, we
shall consider the CGMYe model for option pricing problem. This model is proposed by
Carr, Geman, Madan, and Yor [5], and involves four parameters C, G, M, and Y with
one extra parameter η standing for the volatility, hence the name “CGMYe model”. In
finance, fractional operators are used to develop mathematical models that can describe
the dynamics of asset price more precisely compared to the classical diffusion operators.
By adopting a Lévy process extending Brownian motion for the description of the price,
large price changes, due to sudden exogenous events on information and some system-
atic empirical biases with respect to the traditional Black–Scholes model [4], can be ex-
plained and described properly [1]. The CGMYe process model is one kind of tempered
stable process models. Comparing with the other jump models, the CGMYe model can
adequately describe the empirical features of asset returns and at the same time provide
a reasonable fit to the implied volatility surfaces observed in option markets. Therefore
the CGMYe model becomes popular in practice, while the fast and efficient computation
of this model is still a challenging problem [2, 10, 11, 17].

It is known that the CGMYe model obeys a tempered FPDE [13, 14]. In the numeri-
cal experiments, we apply the proposed finite difference formulas to the CGMYe model
equation. For the advection term in this equation, we adopt the second-order upwind
scheme and the method of characteristic lines. The results of the numerical experiments
show that both methods converge faster and cost less CPU time than the traditional meth-
ods for both European and American option pricing problems. Besides the univariate
CGMYe model, we also take consideration of the two-dimensional pricing problems, i.e.,
to solve the 2-D FPDE of the CGMYe model. Here, we use the alternating directional
implicit (ADI) method in the implementation, and the second-order convergence is also
observed in the numerical simulations.

The rest of this paper is organized as follows. In Section 2, we propose the difference
operators to approximate the tempered Riemann–Liouville fractional derivatives with
second-order truncation error, and use the upwind scheme and the method of charac-
teristic lines for the discretization of the FPDE. We then prove the consistency and the
stability of the second-order approximation in Section 3 and analyze the properties of
the coefficient matrix in Section 4. In Section 5, we extend the one dimensional problem
to a two dimensional problem, namely, the multi-asset CGMYe model, and use the ADI
method to discretize the 2-D FPDE. Some numerical experiments are performed in Sec-


