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Abstract. Mortar methods are widely used techniques for discretizations of partial
differential equations and preconditioners for the algebraic systems resulting from the
discretizations. For problems with high contrast and multiple scales, the standard mor-
tar spaces are not robust, and some enrichments are necessary in order to obtain an
efficient and robust mortar space. In this paper, we consider a class of flow problems
in high contrast heterogeneous media, and develop a systematic approach to obtain
an enriched multiscale mortar space. Our approach is based on the constructions of
local multiscale basis functions. The multiscale basis functions are constructed from
local problems by following the framework of the Generalized Multiscale Finite Ele-
ment Method (GMsFEM). In particular, we first create a local snapshot space. Then we
select the dominated modes within the snapshot space using an appropriate Proper
Orthogonal Decomposition (POD) technique. These multiscale basis functions show
better accuracy than polynomial basis for multiscale problems. Using the proposed
multiscale mortar space, we will construct a multiscale finite element method to solve
the flow problem on a coarse grid and a preconditioning technique for the fine scale
discretization of the flow problem. In particular, we develop a multiscale mortar mixed
finite element method using the mortar space. In addition, we will design a two-level
additive preconditioner and a two-level hybrid preconditioner based on the proposed
mortar space for the iterative method applied to the fine scale discretization of the
flow problem. We present several numerical examples to demonstrate the efficiency
and robustness of our proposed mortar space with respect to both the coarse multi-
scale solver and the preconditioners.
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1 Introduction

In this paper, we consider the following second order elliptic differential equation in
mixed form:

q+κ∇u=0 in Ω, (1.1a)

∇·q= f in Ω, (1.1b)

u=0 on ∂Ω, (1.1c)

where Ω⊂R
d (d=2,3) is a bounded polyhedral domain with outward unit normal vector

n on the boundary, f ∈L2(Ω), κ represents the permeability field that varies over multiple
spacial scales. Possible applications of (1.1a)-(1.1c) include flows in porous media, diffu-
sion and transport of passive chemicals or heat transfer in heterogeneous media. Solving
(1.1a)-(1.1c) can be challenging if Ω is large and the permeability κ is heterogeneous with
multiple scales and high contrast, which is a common characteristic in many industrial,
scientific, engineering, and environmental applications. Direct simulation requires very
fine meshes and this makes the corresponding algebraic system very large and ill condi-
tioned (due to both the small mesh size and the high contrast of the coefficient). Thus
direct simulation is computationally intractable.

In order to solve (1.1a)-(1.1c) efficiently, various reduced-order methods have been
proposed and applied. These methods include numerical upscaling (see, e.g., [1,2]), vari-
ational multiscale method (see, e.g., [3, 4]), multiscale finite element method (see, e.g.,
[5–8]), mixed multiscale finite element methods (see, e.g., [9,10]), the multiscale finite vol-
ume method (see, e.g., [11]), mortar multiscale finite element method (see, e.g., [12–15]),
multiscale hybrid-mixed finite element methods (see, e.g., [16, 17]), generalized multi-
scale finite element methods (see, e.g., [18–22]) and weak Galerkin generalized multiscale
finite element method [23]. These methods typically use some type of global couplings
in the coarse grid level to link the sub-grid variations of neighboring coarse regions. We
will, in this paper, consider the global coupling via the mortar framework. The mor-
tar framework offers many advantages, such as the flexibility in the constructions of the
coarse grid and sub-grid capturing tools. The framework also gives a smaller dimen-
sional global system since the degrees of freedom are reduced to coarse region bound-
aries. The connectivity of the sub-grid variations is typically enforced using a Lagrange
multiplier. For multiscale problems, the choice of the mortar space for the Lagrange
multiplier requires a very careful construction, in order to obtain an efficient and robust
method. To construct an accurate mortar space with a small dimension, we will apply
the recently developed GMsFEM, which offers a systematic approach for model reduc-
tion. In particular, we first create a local snapshot space for every coarse edge. We obtain
this space by first solving some local problems on a small region containing an edge, and
then restricting the solutions to the edge. Next, we select the dominated modes within
the snapshot space using an appropriate POD technique. These dominated modes form
the basis for the mortar space. We will apply our mortar space in two related formu-


