Commun. Comput. Phys. Vol. 23, No. 2, pp. 408-439
doi: 10.4208/ cicp.OA-2017-0025 February 2018

An hp-Adaptive Minimum Action Method Based on
a Posteriori Error Estimate

Xiaoliang Wan!"*, Bin Zheng? and Guang Lin>

1 Department of Mathematics, Center for Computation and Technology, Louisiana
State University, Baton Rouge 70803, USA.

2 Pacific Northwest National Laboratory, Richland, WA 99352, USA.

3 Department of Mathematics & School of Mechanical Engineering, Purdue
University, West Lafayette, IN 47907, USA.

Received 27 January 2017; Accepted (in revised version) 9 May 2017

Abstract. In this work, we develop an hp-adaptivity strategy for the minimum action
method (MAM) using a posteriori error estimate. MAM plays an important role in
minimizing the Freidlin-Wentzell action functional, which is the central object of the
Freidlin-Wentzell theory of large deviations for noise-induced transitions in stochastic
dynamical systems. Because of the demanding computation cost, especially in spa-
tially extended systems, numerical efficiency is a critical issue for MAM. Difficulties
come from both temporal and spatial discretizations. One severe hurdle for the appli-
cation of MAM to large scale systems is the global reparametrization in time direction,
which is needed in most versions of MAM to achieve accuracy. We recently introduced
anew version of MAM in [22], called tMAM, where we used some simple heuristic cri-
teria to demonstrate that tMAM can be effectively coupled with h-adaptivity, i.e., the
global reparametrization can be removed. The target of this paper is to integrate hp-
adaptivity into tMAM using a posteriori error estimation techniques, which provides a
general adaptive MAM more suitable for parallel computing. More specifically, we use
the zero-Hamiltonian constraint to define an indicator to measure the error induced by
linear time scaling, and the derivative recovery technique to construct an error indica-
tor and a regularity indicator for the transition paths approximated by finite elements.
Strategies for hp-adaptivity have been developed. Numerical results are presented.
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1 Introduction

Small random perturbations of dynamical systems can introduce rare but important
events, e.g., the transitions between different stable equilibrium states of a determinis-
tic dynamical system. Such noise-induced transitions have been observed on both small
and large scales, and are critical in many physical, biological and chemical systems. Ex-
amples include nucleation events of phase transitions, chemical reactions, regime change
in climate, conformation changes of biomolecules, hydrodynamic instability, etc.

The Freidlin-Wentzell (F-W) theory of large deviations provides a rigorous mathe-
matical framework to understand the transitions induced by small noise in general dy-
namical systems. The key object of the F-W theory of large deviations is the F-W action
functional, and the critical quantities are the minimizer of the F-W action functional and
the associated minimum value. Starting from [8], the large deviation principle given by
the F-W theory has been approximated numerically, and the numerical methods are, in
general, called minimum action method (MAM).

Consider an ordinary differential equations perturbed by small white noise

dX;=b(X;)dt++/edW;, (1.1)

where ¢ is a small positive parameter. We are interested in two types of problems:
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where x; and x; are two points in the phase space, St(¢) is called the action functional,
and V(x1,x2) the quasi-potential from point x; to x,. Here ¢ (t) is a transition path con-
necting x1 and x; on the time interval [0, T]. The minimizers of Problem I and II character-
ize the difficulty of the noise-induced transition from x; to the vicinity of x,, see Egs. (2.4)
and (2.5). In Problem I, the transition is restricted to a certain time scale T, which is re-
laxed in Problem II. Let ¢p*(¢) be the minimizer of either Problem I or Problem II, which is
also called the minimal action path (MAP), or the instanton in physical literature related
to path integral. From the application point of view, solving Problem I and II is impor-
tant. For example, the minimizer of F-W action functional can be used to construct an
asymptotically efficient estimator in important sampling, where optimization problems
like Problem I and II need to be solved effectively [5,17]. The MAM can help to explore
a high-dimensional phase space [18,27]. Another example is the nonlinear instability of
wall-bounded shear flows, which can be modelled as a rare event of Navier-Stokes equa-
tions perturbed by small noise [20,23]. The most probable transition path provides useful
information that is difficult or impossible to obtain in a deterministic way.



