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Abstract. For problems governed by a non-normal operator, the leading eigenvalue
of the operator is of limited interest and a more relevant measure of the stability is ob-
tained by considering the harmonic forcing causing the largest system response. Var-
ious methods for determining this so-called optimal forcing exist, but they all suffer
from great computational expense and are hence not practical for large-scale prob-
lems. In the present paper a new method is presented, which is applicable to problems
of arbitrary size. The method does not rely on timestepping, but on the solution of
linear systems, in which the inverse Laplacian acts as a preconditioner. By formulat-
ing the search for the optimal forcing as an eigenvalue problem based on the resolvent
operator, repeated system solves amount to power iterations, in which the dominant
eigenvalue is seen to correspond to the energy amplification in a system for a given
frequency, and the eigenfunction to the corresponding forcing function. Implemen-
tation of the method requires only minor modifications of an existing timestepping
code, and is applicable to any partial differential equation containing the Laplacian,
such as the Navier-Stokes equations. We discuss the method, first, in the context of
the linear Ginzburg-Landau equation and then, the two-dimensional lid-driven cavity
flow governed by the Navier-Stokes equations. Most importantly, we demonstrate that
for the lid-driven cavity, the optimal forcing can be computed using a factor of up to
500 times fewer operator evaluations than the standard method based on exponential
timestepping.
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1 Introduction

In hydrodynamic stability, a classical analysis generally consists of two parts — the de-
termination of a basic state about which the governing equations may be linearized, and
the calculation of eigenvalues of the Jacobian A. For non-normal operators, other consid-
erations may be more relevant. For example, solutions may experience transient growth
even when all of the eigenvalues are located in the left half of the complex plane, and in
a non-linear framework trigger subcritical transition [10,30,31]. Another type of analysis
concerns the amplification due to a harmonic driving force f (x)eiωt, where we seek to
determine the temporal frequency ω and spatial profile f that cause the largest energy
amplification in the system.

The purpose of this paper is to introduce a novel iterative matrix-free method for
computing the optimal forcing of a driven system. This method is best explained by
placing it in the context of those used to carry out linear stability analysis, so we begin
by surveying these techniques. Denoting by A the governing operator linearized about
a basic state, perturbations q(x,t) obey

∂q

∂t
=Aq. (1.1)

The governing operatorA is considered to be spatially dependent, either via the geo-
metrical specifications of the problem, or through a spatially-dependent basic state about
which the evolution equations have been linearized, or both. Perturbations q may de-
pend on one, two, or three spatial dimensions. If there is only one spatial dimension,
the governing operator can be formulated and treated explicitly. For higher-dimensional
systems, if one or two of the spatial directions are homogeneous, then the eigenfunctions
are trigonometric or exponential in those directions and the linearized operator is banded
or block-diagonal [12]. In such cases, it may still be possible to determine the eigenvalues
and eigenfunctions (denoted by eigenpairs) of A through direct methods.

With increased geometrical complexity, an explicit representation and a full diagonal-
ization of the operator are usually too costly in terms of storage and computational power
and it becomes necessary to use matrix-free methods to find the desired eigenpairs. A
timestepping algorithm for solving (1.1), which carries out the action of an approxima-
tion to the exponential operator exp(A∆t), is a natural means for doing so. Integrating
the linearized equations (1.1) in time is equivalent to carrying out the power method on
exp(A∆t), and will converge to the leading eigenfunction.

Turning to the topic of this paper, when a system is linearly stable, it may nevertheless
undergo amplification due to a harmonic driving force, as described by

∂q

∂t
=Aq+ f eiωt. (1.2)

If all of the eigenvalues ofA have negative real part, then q(x,t)→−(A−iωI)−1 f (x)eiωt


