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Abstract. The minimum action method (MAM) is to calculate the most probable tran-
sition path in randomly perturbed stochastic dynamics, based on the idea of action
minimization in the path space. The accuracy of the numerical path between differ-
ent metastable states usually suffers from the “clustering problem” near fixed points.
The adaptive minimum action method (aMAM) solves this problem by relocating im-
age points equally along arc-length with the help of moving mesh strategy. However,
when the time interval is large, the images on the path may still be locally trapped
around the transition state in a tangle, due to the singularity of the relationship be-
tween arc-length and time at the transition state. Additionally, in most non-gradient
dynamics, the tangent direction of the path is not continuous at the transition state so
that a geometric corner forms, which brings extra challenges for the aMAM. In this
note, we improve the aMAM by proposing a better monitor function that does not
contain the numerical approximation of derivatives, and taking use of a generalized
scheme of the Euler-Lagrange equation to solve the minimization problem, so that
both the path-tangling problem and the non-smoothness in parametrizing the curve
do not exist. To further improve the accuracy, we apply the Weighted Essentially non-
oscillatory (WENO) method for the interpolation to achieve better performance. Nu-
merical examples are presented to demonstrate the advantages of our new method.
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1 Introduction

The calculation of quasi-potential and the most probably transition path between stable
equilibria in metastable systems is of interest to researchers in the study of dynamics of
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complex and stochastic systems in long time scales [1]. The minimum action method
(MAM) [2] was introduced to find such optimal paths by directly minimizing the action
functional, which is the rate function in the large deviation theory [1]. The action mini-
mizer within a certain rare-event subset in the path space, i.e., the minimum action path,
carries the dominant contribution to the probability for the corresponding rare events.
So, conditioned on the occurrence of rare events, the minimum action path is the most
probable path under the influence of small noise in the long run. In many applications,
the path represents the progressive physical process of important rare events such as
phase transformation, chemical reaction, etc. Therefore, the numerical study of how to
calculate the path efficiently is of great importance.

There have been quite many developments of numerical methods for the minimum
action path. Firstly, when the system is of gradient type, i.e., the dynamics is gradient
flow driven by a potential energy, the variational problem for the minimum action path
gets simplified and it turns out that essentially the optimal transition path is simply the
time-reversed trajectory of the gradient flow. The joint location of the “uphill” path from
one well and the “downhill” path toward the other well in the phase space is an index-1
saddle point which serves as transition state. The min-mode eigen-direction of the saddle
point collapses with the tangential direction of the path from the both sides. This result
reveals a second important feature for the gradient system: the tangential direction of the
path is always continuous (belonging to C1 curve), even when it crosses the separatrix via
the saddle point. In practice, the path-finding algorithms, such as the string method [3]
never searches the “uphill” and “downhill” paths separately since the saddle point is
unknown a priori, but these methods search the whole path once for all between local
minima and then locate the saddle point from the numerical path and split the path into
“uphill” and “downhill” segments for interpretations.

But in the non-gradient systems, the above features of the path no longer holds, due to
the lack of detailed balance for the stationary probability distribution. The “uphill” path
and the “downhill” path are distinctively different in nature. More importantly, they
meet at the saddle point from different directions in two sides of the separatrix: a sharp
corner is usually formed where the path crosses the separatrix. The “uphill” path escapes
the characteristic boundary by choosing a direction different from the eigen-direction of
the saddle point. The path then exhibits non-smoothness, meaning that if the path ϕ
is written in terms of arc length parameter s∈ [0,1], then the tangent vector ϕ′(s) is not
continuous at s∗, even though |ϕ′(s)| ≡ const, where ϕ(s∗) is the location of the saddle
point. This is a generic phenomenon for transition path in non-gradient system and it is
the origin of the non-Gaussian skewed distribution of the exist point on boundary. It also
affects the prefactor estimation of mean exist time for non-gradient systems [4, 5]. Refer
to the work of [6, 7, 9] for theoretical analysis of the connection to effect of focusing and
caustics. To visualize this non-smooth feature of the paths, we shall present two examples
including the Maier-Stein model in [8] in the figures shown later.

To locate the saddle points, on the other hand, the direct search of saddle point, such
as the dimer method [10] or the gentlest ascent dynamics [11, 12], sounds an alterna-


