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Abstract. We construct and analyze conservative local discontinuous Galerkin (LDG)
methods for the Generalized Korteweg-de-Vries equation. LDG methods are designed
by writing the equation as a system and performing separate approximations to the
spatial derivatives. The main focus is on the development of conservative methods
which can preserve discrete versions of the first two invariants of the continuous solu-
tion, and a posteriori error estimates for a fully discrete approximation that is based on
the idea of dispersive reconstruction. Numerical experiments are provided to verify
the theoretical estimates.
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1 Introduction

In this paper we consider the Generalized Korteweg-de Vries (GKdV) equation posed
with periodic boundary conditions

{

ut+(up+1)x+ǫuxxx =0, 0< x<1, t>0,
u(x,0)=u0(x), 0< x<1,

(1.1)

where p is a positive integer and ǫ is a positive parameter. The GKdV equation belongs
to a class of equations featuring nonlinear and dispersive effects that are widely used to
model the propagation of physical waves.
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Since the discovery of the solitons in the sixties there has been intense interest and
resulting research activity on the well-posedness as well as the numerical treatment of
(1.1) and other nonlinear dispersive equations. The problem (1.1) is locally well-posed in
a wide range of function classes, but it is also known that solutions do not exist for all
time and singularity formation may occur, as can be gleaned from [3, 23, 24]. In parallel
to the analytical developments, intense attention focused on developing methods for the
numerical treatment of (1.1) resulting in schemes belonging to all the known classes of
numerical methods including finite difference, finite element, finite volume and spectral
methods as well as “special” methods based on the inverse scattering transform. We refer
to [9] and the references therein for a survey of such works. However, it must be said that
a combination of the nonlinearity and the dispersive term uxxx (which is a derivative of
odd order) makes the rigorous treatment of issues such as stability and convergence quite
difficult. Whereas a few early works contained such rigorous treatments, the work of Shu
and coworkers in the new century on discontinuous Galerkin (DG) methods constituted
an important development through the construction of a dissipative dispersive projection
operator [11, 27]. In [9] two of the authors advanced the paradigm and showed that
a conservative version of the dissipative operator constructed in [11, 27] has beneficial
numerical properties such as slower growth of the errors over long time intervals.

As in [9], the numerical methods discussed here are the DG methods. They are char-
acterized by the use of piecewise polynomial spaces that are totally discontinuous, and
were originally devised to solve hyperbolic conservation laws with only first order spa-
tial derivatives, e.g. [13–15, 17, 18, 25]. They allow arbitrarily unstructured meshes, and
have a compact stencil; moreover, they easily accommodate arbitrary h-p adaptivity. The
DG methods were later generalized to the local DG (LDG) methods by Cockburn and
Shu to solve the convection-diffusion equation [16], motivated by successful numerical
experiments from Bassi and Rebay for the compressible Navier-Stokes equations [6]. As a
result, the LDG methods have been applied to solve various partial differential equations
(PDEs) containing higher-order derivatives. We refer to the review paper [26] for more
details. The LDG method, in contrast to the so-called primitive variable formulations, is
characterized by writing the evolution equation as a system by considering each spatial
derivative as a dependent variable, one benefit of such an approach being the simultane-
ous approximation of the spatial derivatives. For the KdV-type equations (1.1), an LDG
method was first developed in [29], in which a sub-optimal error estimate was provided
for the linearized problem. In [27], Xu and Shu proved the k+1/2-th order convergence
rate for the LDG method applied to the fully nonlinear KdV equation. Later, an opti-
mal L2 error estimate was derived in [28] for the linearized equation. Recently, there has
been a different approach in solving the KdV equations by using the DG method directly
without introducing any auxiliary variables nor rewriting the original equation into a
larger system. Cheng and Shu proposed such DG methods in [12] for PDEs involving
high-order derivatives, and an energy-conserving DG method for the KdV equation was
developed by Bona et al. in [9]. The superconvergence property of the LDG methods for
the linearized KdV equation has been studied in [20].


