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Abstract. Here we investigate the kinematic transports of the defects in the nematic
liquid crystal system by numerical experiments. The model is a shear flow case of the
viscoelastic continuum model simplified from the Ericksen-Leslie system. The numeri-
cal experiments are carried out by using a difference method. Based on these numerical
experiments we find some interesting and important relationships between the kine-
matic transports and the characteristics of the flow. We present the development and
interaction of the defects. These results are partly consistent with the observation from
the experiments. Thus this scheme illustrates, to some extent, the kinematic effects of
the defects.
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1 Introduction

The molecules of nematic liquid crystals have long-range orientational order and can
be easily aligned by external forces. This will result in defects, textures and other im-
portant phenomena, e.g. disclination [4, 6, 10, 13, 32]. Many efforts have been made on
theories to explore the liquid dynamics, such as Ericksen-Leslie (EL) theory [8,10], tensor
models [1, 24, 25], hard-rod models [6, 10, 12], capillary models [28, 30, 33, 34] and so on.
Recently, many mathematicians are absorbed in investigating the solutions of these theo-
retical models, including the numerical simulations [7, 9, 17, 19, 20, 22, 23, 26, 36, 37, 39–41]
and theoretical analysis [16, 18, 21] and references therein.
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Defects are classified in terms of strength (S) and dimensionality (D). The strength
captures the degree of rotational discontinuity when encircling the defect, whereas the
dimension refers to points (D=0), lines (D=1) and walls (D=2) [13,14,27]. Disclinations
are line defects with D=1 and disclination ends cannot be found in the bulk. The strength
of a disclination line is defined by a sign (+,−) and a magnitude (1/2,1,3/2,2,··· ). The
sign indicates the direction of rotation and the magnitude is the amount of rotation. The
defects with s=±1/2 or s=±1 has a singular core.

Toch et al. [35], showed that back-flow, the coupling between the order parameter
and the velocity fields, has a significant effect on the motion of defects in nematic liquid
crystals. In particular the defect speed can depend strongly on the topological strength
in two dimensions and on the sense of rotation of the director about the core in three
dimensions. They also considered that the annihilation of a pair of defects of strength s=
±1/2 and found that back-flow can change the speed of defects by up to ∼100%. Rey et
al. [11,29,31] investigated the interaction of defects with different strength and compared
them with the experiments. Here we study the interaction of defects immersing the fluids
and find some interesting and important relationships between the kinematic transports
and the characteristics of the flow.

In the Ericksen-Leslie (EL) theory, a vector field d is used to depict the alignment of
the molecules and also to represent the direction of preferred orientation of the molecules
in the neighbourhood of any point. The evolution of d expresses the kinematic motions.
By the Ericksen and Leslie theory, the model is derived as the following nonlinear cou-
pled system for nematic liquid crystals in fluid field [19, 21]:

ut+(u·∇)u+∇p=µ△u+λ∇·σ, (1.1)

∇·u=0, (1.2)

σ=(∇d)T∇d+β(△d−f(d))dT+(β+1)d(△d−f(d))T , (1.3)

dt+(u·∇)d+Dβ(u)d=γ(△d−f(d)). (1.4)

Here u denotes the velocity of the nematic liquid crystals fluid, p the pressure, d the
orientation of the molecules, u,d : Ω×R

+ → R
3,p : Ω×R

+ → R,Ω ⊂ R
2. x ∈ Ω is the

Eulerian coordinate. µ,λ and γ are positive constants. In Eq.(1.4) f(d)=(4/ε2)(|d|2−1)d
can be treated as a penalty function to approximate the constraint |d|= 1 which is due
to the molecules being of similar size for small ε. The corresponding energy density
is F(d) = (1/ε2)(|d|2−1)2 and it is obvious f(d) is the gradient of ∇F(d). We define
Dβ(u)=β∇u+(1+β)(∇u)T for β∈R. Hence, it can be rewritten as

Dβ(u)=−
∇u−(∇u)T

2
−(−2β−1)

∇u+(∇u)T

2
. (1.5)

The parameter β depends on the shape of the molecules. In Eq. (1.4), the kinematic trans-
port of d is D

Dt d= dt+(u·∇)d+Dβ(u)d. When the size of the molecules is small com-
pared with the scale of the macroscopic fluid, d is just transported by the flow trajectory.
Then the kinematic transport of d is D

Dt d=dt+(u·∇)d without the effect term Dβ(u)d of


