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Abstract. Transient diffusion equations arise in many branches of engineering and
applied sciences (e.g., heat transfer and mass transfer), and are parabolic partial differ-
ential equations. It is well-known that these equations satisfy important mathematical
properties like maximum principles and the non-negative constraint, which have im-
plications in mathematical modeling. However, existing numerical formulations for
these types of equations do not, in general, satisfy maximum principles and the non-
negative constraint. In this paper, we present a methodology for enforcing maximum
principles and the non-negative constraint for transient anisotropic diffusion equa-
tion. The proposed methodology is based on the method of horizontal lines in which
the time is discretized first. This results in solving steady anisotropic diffusion equa-
tion with decay equation at every discrete time-level. We also present other plausible
temporal discretizations, and illustrate their shortcomings in meeting maximum prin-
ciples and the non-negative constraint. The proposed methodology can handle general
computational grids with no additional restrictions on the time-step. We illustrate the
performance and accuracy of the proposed methodology using representative numer-
ical examples. We also perform a numerical convergence analysis of the proposed
methodology. For comparison, we also present the results from the standard single-
field semi-discrete formulation and the results from a popular software package, which
all will violate maximum principles and the non-negative constraint.
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Figure 1: Diffusion in heterogeneous anisotropic medium: This figure shows the contours of the concentration
under the Galerkin single-field formulation (left) and the proposed methodology (right) at time = 0.5. The
time-step is taken as ∆t=0.5, and XSeed=YSeed=51. The regions that violated the non-negative constraint
are indicated in white color.

1 Introduction and motivation

Certain quantities (e.g., concentration of a chemical species and absolute temperature)
naturally attain non-negative values. A violation of the non-negative constraint for these
quantities will imply violation of some basic tenets of physics. It is, therefore, imperative
that such physical constraints are met by mathematical models and by their associated
numerical formulations. In this paper, we shall focus on two popular transient mathemat-
ical models, in which physical restrictions like the non-negative constraint play a central
role. The first model is based on Fick’s assumption (commonly referred to as Fick’s law)
and the balance of mass. Fick’s assumption is a simple constitutive model to describe the
diffusion of a chemical species in which the flux is proportional to the negative gradient
of the concentration. The second model is based on Fourier’s assumption and the balance
of energy, which describes heat conduction in a rigid conductor. Both these constitutive
models combined with their corresponding balance laws give rise to transient diffusion
equations, which are parabolic partial differential equations.

There has been tremendous progress in applied mathematics for these type of equa-
tions with respect to existence and uniqueness results, qualitative behavior of solutions,
estimates, and other mathematical properties [21, 56]. In particular, it has been shown
that transient diffusion equations satisfy the so-called maximum principles [56]. It will
be shown in a subsequent section that the non-negative constraint can be shown as a
consequence of maximum principles under certain assumptions. Analytical solutions
to several problems have been documented in various monographs (e.g., see references
[11, 54]). However, it should be noted that most of these solutions are for isotropic and
homogeneous media, and for simple geometries. For problems involving anisotropic
and heterogeneous media, and complex geometries; finding analytical solutions is not
possible, and one has to resort to numerical solutions. Obtaining physically meaning-


