
Commun. Comput. Phys.
doi: 10.4208/cicp.110813.140314a

Vol. 16, No. 3, pp. 764-780
September 2014

Exact Artificial Boundary Condition for the

Poisson Equation in the Simulation of the

2D Schrödinger-Poisson System

Norbert J. Mauser1 and Yong Zhang1,∗

1 Wolfgang Pauli Institute c/o Fak. Mathematik, University Wien,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.

Received 11 August 2013; Accepted (in revised version) 14 March 2014

Communicated by Ming-Chih Lai

Available online 4 July 2014

Abstract. We study the computation of ground states and time dependent solutions
of the Schrödinger-Poisson system (SPS) on a bounded domain in 2D (i.e. in two space
dimensions). On a disc-shaped domain, we derive exact artificial boundary conditions
for the Poisson potential based on truncated Fourier series expansion in θ, and propose
a second order finite difference scheme to solve the r-variable ODEs of the Fourier co-
efficients. The Poisson potential can be solved within O(M N logN) arithmetic oper-
ations where M,N are the number of grid points in r-direction and the Fourier bases.
Combined with the Poisson solver, a backward Euler and a semi-implicit/leap-frog
method are proposed to compute the ground state and dynamics respectively. Numer-
ical results are shown to confirm the accuracy and efficiency. Also we make it clear
that backward Euler sine pseudospectral (BESP) method in [33] can not be applied to
2D SPS simulation.
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1 Introduction

The Schrödinger-Poisson system (SPS) is used, e.g., in quantum semiconductor mod-
elling [2, 20]. We shall deal with the 2D (two space dimensions) case [1]. The system
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reads, in rescaled form, as

i∂tψ(x,t)=

(
−1

2
∆+V(x)+β ϕ

)
ψ(x,t), x∈R

2, t>0, (1.1)

ψ(x,t=0)=ψ0(x), x∈R
2, (1.2)

−∆ϕ(x,t)= |ψ(x,t)|2 , x∈R
2, t>0, (1.3)

where the complex-valued function ψ(x,t) stands for the wave function and decays to
zero at far field, i.e., lim|x|→+∞ |ψ(x,t)|=0, ∀t>0, ψ0 is the initial data lying in the energy

space H1(R2), V(x) is an external potential and β∈R is a coupling constant that repre-
sents the relative strength of the Poisson potential for repulsive case (β>0) and attractive
case (β<0). Note that the Poisson equation (1.3) can be rewritten as a convolution of the
density and the Green’s function of Laplace operator as follows

ϕ(x,t)=
(
− 1

2π
ln|x|

)
∗|ψ(x,t)|2 . (1.4)

Two important invariants are the mass M(ψ):=
∫

R2 |ψ|2dx and the total energy E(ψ):=∫
R2

1
2 |∇ψ|2+V(x)|ψ|2+ 1

2 β ϕ|ψ|2 dx. The ground state φg is defined as the minimizer of
the energy E on the unit sphere S={φ|‖φ‖R2(R2)=1,E(φ)<∞}, i.e.,

φg=arg min
φ∈S

E(φ) (1.5)

and the ground state energy is denoted as Eg =E(φg).
The SPS is a ”weakly” nonlinear Schrödinger equation (NLS) that has been exten-

sively studied analytically and numerically. For a derivation of the Schrödinger-Poisson
system from the linear N-body Schrödinger equation with Coulomb interaction, see e.g.
[13,14,18]. For a discussion of the dimension reduction from 3D to 2D for the Schrödinger-
Poisson system, see e.g. [10, 15].

Here we focus on the numerical aspect of reducing the whole space problem to a
numerically tractable problem on a bounded domain, with emphasis on the boundary
conditions imposed on the Poisson equation.

Several efficient and accurate numerical methods had been proposed to solve SPS,
such as the time-splitting spectral/pseudospectral method [11], finite difference method
and finite element method [30]. Particularly, for SPS, we refer the reader to [12,17,33] for
the time splitting pseudospectral method, to [26, 31] for difference method and etc.

For numerical simulations of Schrödinger type equations, the whole space problem
is usually truncated on a bounded domain, assuming that the wave function outside the
computation domain is negligible. The easiest way is to truncate the wave function on a
bounded domain and to use homogeneous Dirichlet boundary conditions (correspond-
ing to reflection due to an infinite potential) or periodic boundary conditions (called
”Born-von Karman boundary conditions” in solid state physics) for the wave function
and its gradient.


