Extension and Comparative Study of AUSM-Family Schemes for Compressible Multiphase Flow Simulations

Keiichi Kitamura^{1,2,*}, Meng-Sing Liou¹ and Chih-Hao Chang³

¹ NASA Glenn Research Center, Cleveland, OH 44135, USA.

² Research Fellow of Japan Society for the Promotion of Science (JSPS), JAXA's Engineering Digital Innovation (JEDI) Center, 3-1-1 Yoshinodai, Chuo, Sagamihara, Japan; Previously at Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 Japan; Currently at Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
³ Theofanous & Co Inc. Santa Barbara, CA 93109, USA.

Received 2 August 2013; Accepted (in revised version) 19 February 2014

Communicated by Chi-Wang Shu

Available online 24 June 2014

Abstract. Several recently developed AUSM-family numerical flux functions (SLAU, SLAU2, AUSM⁺-up2, and AUSMPW+) have been successfully extended to compute compressible multiphase flows, based on the stratified flow model concept, by following two previous works: one by M.-S. Liou, C.-H. Chang, L. Nguyen, and T.G. Theofanous [AIAA J. 46:2345-2356, 2008], in which AUSM⁺-up was used entirely, and the other by C.-H. Chang, and M.-S. Liou [J. Comput. Phys. 225:840-873, 2007], in which the exact Riemann solver was combined into AUSM⁺-up at the phase interface. Through an extensive survey by comparing flux functions, the following are found: (1) AUSM⁺-up with dissipation parameters of K_v and K_u equal to 0.5 or greater, AUSMPW+, SLAU2, AUSM⁺-up2, and SLAU can be used to solve benchmark problems, including a shock/water-droplet interaction; (2) SLAU shows oscillatory behaviors [though not as catastrophic as those of AUSM⁺ (a special case of AUSM⁺-up with $K_{v} = K_{u} = 0$] due to insufficient dissipation arising from its ideal-gas-based dissipation term; and (3) when combined with the exact Riemann solver, AUSM⁺-up ($K_p = K_u = 1$), SLAU2, and AUSMPW+ are applicable to more challenging problems with high pressure ratios.

AMS subject classifications: 76T10, 76M12, 76N99

Key words: Multiphase flow, two-fluid model, AUSM-family, stratified flow model.

*Corresponding author. *Email addresses:* kitamura@ynu.ac.jp (K. Kitamura), meng-sing.liou@nasa.gov (M.-S. Liou), chchang@theofanous.net (C.-H. Chang)

http://www.global-sci.com/

©2014 Global-Science Press

Nomenclature

a	_	speed of sound [m/c]	
a x	=	speed of sound [m/s] volume fraction	
C_p	=	specific heat at constant pressure, 1004.5 for air and 4186 for water [J/(kg K)]	
C_p^*	=	interfacial pressure coefficient, 2.0	
	=	function in SLAU	
$\stackrel{\chi}{E}$	=	total energy per unit mass [J/kg]	
E,F	=	inviscid (numerical) flux vectors in x and y directions, respectively	
ε. ε	=	small positive value, such as 10^{-7}	
	=	gravity constant, 9.8 $[m/s^2]$, or function in SLAU	
8 G	=	cubic function	
γ	=	specific heat ratio, 1.4 for air and 2.8 for water	
, H	=	total enthalpy [J/kg]	
K_p, K_u	=	dissipation coefficients in AUSM ⁺ -up	
M	=	Machnumber	
р	=	pressure [Pa]	
, PR	=	pressure ratio, p_L/p_R	
Q	=	conservative variable vector	
ρ	=	density [kg/m ³]	
S	=	area of cell interface [m ²]	
Т	=	temperature [K]	
V	=	cell volume [m ³], or velocity [m/s]	
и, v	=	velocity components in Cartesian coordinates [m/s]	
<i>x,y</i>	=	Cartesian coordinates [m]	
Subscripts			
L, R [']	=	left and right running wave components	
8	=	gas phase	
j	=	(current) cell index	
k	=	<i>k</i> -th phase $(k=1, 2 \text{ or } g, l)$	
1	=	liquid phase	
п	=	normal component to cell interface	
т	=	Newton iteration stage	
∞	=		
1/2	=	cell-interfacial value	
Superscripts			
int	=	interfacial value	
max, min	=	maximum and minimum values	
+,-	=	left- and right-side values at cell interface	
_	=	arithmetically averaged value of both sides at cell interface	

1 Introduction

Although the present computational fluid dynamics (CFD) technologies for compressible flows enable us to simulate a wide variety of flow physics, we still have issues in dealing with high- and low-speed flows:

1) High-speed flows (M > 1.5, super- and hypersonic): Shock anomalies [1–4], diffi-