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Abstract. Various works from the literature aimed at accelerating Bayesian inference
in inverse problems. Stochastic spectral methods have been recently proposed as sur-
rogate approximations of the forward uncertainty propagation model over the support
of the prior distribution. These representations are efficient because they allow afford-
able simulation of a large number of samples from the posterior distribution. Unfor-
tunately, they do not perform well when the forward model exhibits strong nonlinear
behavior with respect to its input.

In this work, we first relate the fast (exponential) L2-convergence of the forward
approximation to the fast (exponential) convergence (in terms of Kullback-Leibler di-
vergence) of the approximate posterior. In particular, we prove that in case the prior
distribution is uniform, the posterior is at least twice as fast as the convergence rate of
the forward model in those norms. The Bayesian inference strategy is developed in the
framework of a stochastic spectral projection method. The predicted convergence rates
are then demonstrated for simple nonlinear inverse problems of varying smoothness.

We then propose an efficient numerical approach for the Bayesian solution of in-
verse problems presenting strongly nonlinear or discontinuous system responses. This
comes with the improvement of the forward model that is adaptively approximated by
an iterative generalized Polynomial Chaos-based representation. The numerical ap-
proximations and predicted convergence rates of the former approach are compared
to the new iterative numerical method for nonlinear time-dependent test cases of vary-
ing dimension and complexity, which are relevant regarding our hydrodynamics mo-
tivations and therefore regarding hyperbolic conservation laws and the apparition of
discontinuities in finite time.
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1 Introduction

Nowadays, the development of efficient computational tools to support decision-making
and risk analysis under uncertainty is critical for the design and operation of engineered
systems and more generally for reliable predictive science. An open question with a huge
significance for uncertainty quantification (UQ) is the problem of realistic representation
of input uncertainty (initial/operating/boundary conditions, model parameters, source
terms, ···) to the model. A quick survey of the UQ literature shows that research in this
area has been accustomed to the development of the propagation step and quantifica-
tion of the response, with improvement on the efficiency, implementation, performance,
··· . In many works, the quantification of input uncertainty is often rudimentary, asso-
ciating a random variable to each of the random parameter, and often making a priori
choice on the distributions, relying for instance on labelled distributions, such as uniform
distributions, due to a lack of knowledge. Another weakness is the assumption of ran-
dom parameters independence. Indeed, the gold rush for the development of suitable and
efficient stochastic representations of ever increasing larger data sets (e.g., hundreds of
random parameters) relies heavily on the assumption of independent random dimen-
sions which is most of the time not justified for engineering systems. In fact the effective
stochastic dimensionality of the system depends strongly on the appropriate represen-
tation of the correlations existing between the dependent random variables representing
the inputs. This mathematical description is particularly difficult when data is gathered
from different sources, let say from both experiments and simulations, or when direct
observations/measurements are not possible or too costly. Several methodologies for the
identification of representations of random variables/processes from experimental data
for instance have been proposed, such as the method of moments [2], maximum likeli-
hood [8, 17], maximum entropy [7] or Bayesian inference [16, 77]. Inverse problems (IP)
usually refer to the estimation of model parameters or inputs from indirect observations.
While the resolution of a forward model predicts the system outputs given the inputs
by solving the governing equations, the IP reverses this relationship by seeking to esti-
mate uncertain inputs from measurements or observations. The IP is often formulated
as a (large) deterministic nonlinear optimization problem that minimizes the discrepancy
between the observed and predicted outputs in some appropriate norm while also min-
imizing a regularization term that penalizes unwanted features of the inputs [27, 65].
Following this procedure, a set of best inputs, i.e., fitting the data and minimizing the
regularization penalty term, are obtained. Nevertheless, the predictive accuracy strongly
depends on the availability of large input data sets. In practice the observations are lim-
ited and often noisy. Therefore, it becomes more legitimate to seek a complete statistical
description of the input values that is consistent with the data, instead of discrete esti-
mates of the best-fit inputs.

The Bayesian inference follows this path by reformulating the IP as a problem of sta-
tistical inference, incorporating the forward model, prior information on the inputs, and
uncertainties in the measurements. The solution is the posterior joint pdf of the inputs,


