
Commun. Comput. Phys.
doi: 10.4208/cicp.110613.270913a

Vol. 15, No. 5, pp. 1343-1351
May 2014

A Frequency Determination Method for Digitized

NMR Signals

H. Yan1,2,∗, K. Li1,2, R. Khatiwada1,2, E. Smith1,2, W. M. Snow1,2,
C. B. Fu3,1,2, P.-H. Chu4, H. Gao4 and W. Zheng4

1 Indiana University, Bloomington, Indiana 47408, USA.
2 Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN
47408, USA.
3 Department of Physics, Shanghai Jiaotong University, Shanghai,200240, China.
4 Triangle Universities Nuclear Laboratory and Department of Physics, Duke Uni-
versity, Durham, North Carolina 27708, USA.

Received 11 June 2013; Accepted (in revised version) 27 September 2013

Communicated by Michel A. Van Hove

Available online 21 February 2014

Abstract. We present a high precision frequency determination method for digitized
NMR FID signals. The method employs high precision numerical integration rather
than simple summation as in many other techniques. With no independent knowl-
edge of the other parameters of a NMR FID signal (phase φ, amplitude A, and trans-
verse relaxation time T2) this method can determine the signal frequency f0 with a
precision of 1/(8π2 f 2

0 T2
2 ) if the observation time T ≫ T2. The method is especially

convenient when the detailed shape of the observed FT NMR spectrum is not well
defined. When T2 is +∞ and the signal becomes pure sinusoidal, the precision of the
method is 3/(2π2 f 2

0 T2) which is one order more precise than the ±1 count error in-
duced precision of a typical frequency counter. Analysis of this method shows that the
integration reduces the noise by bandwidth narrowing as in a lock-in amplifier, and
no extra signal filters are needed. For a pure sinusoidal signal we find from numerical
simulations that the noise-induced error in this method reaches the Cramer-Rao Lower
Band (CRLB) on frequency determination. For the damped sinusoidal case of most in-
terest, the noise-induced error is found to be within a factor of 2 of CRLB when the
measurement time T is 2 or 3 times larger than T2.We discuss possible improvements
for the precision of this method.
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1 Introduction

In nuclear magnetic resonance (NMR) one often encounters a free induction decay (FID)
signal S(t) which takes the form of a sinusoidal function multiplied by a decaying expo-
nential:

S(t)=Acos(ω0t+φ0)exp
(

−
t

T2

)

, (1.1)

where t is time, A is the signal amplitude, ω0=2π f0 is the resonance frequency, φ0 is the
signal phase, and T2 is the transverse spin relaxation time. In practice, limited by exper-
imental conditions, parameters, like f0, φ0, etc., usually cannot be determined without
error, on one hand, S(t) is disturbed by various noises, on the other hand, S(t) can nei-
ther be digitized with infinitesimal time intervals nor observed for an infinitely long time.
It is of a general interest to determine these parameters using various types of analysis.
In particular, the determination of the resonance frequency precisely for a digitized FID
signal S(t) observed over a finite time is crucial for recent experiments [1–3] searching
for possible new spin dependent interactions which, if present, would cause a tiny shift
of the resonance frequency.

When T2→+∞, Eq. (1.1) can be simplified to:

S(t)=Acos(2π f0t+φ0). (1.2)

In this case, many different algorithms using Fast Fourier transform (FFT) or Digital
Fourier transform (DFT) [4, 5] were developed for frequency and spectra estimation in
power systems. For sinusoidal signals, by using S̈(t) =−ω2

0S(t), one can obtain ω0 [6]
from a linear fit of S̈(t) to S(t), where S̈(t) is derived by finite differentiation of the digi-
tized signal S(t), but extra noise filtering is needed since the second derivative is suscep-
tible to high frequency noise.

To determine the frequency precisely and to reduce the noise without filtering, we
propose a different approach in this paper based on integration. We argue that our ap-
proach is especially valuable in situations when the shape of the signal in frequency space
possesses bias. The structure of this paper is as follows. We first describe the basic princi-
ple of the method with an example. We then thoroughly analyze the method and derive
its precision. The effect of noise is discussed in the following section. Possible improve-
ments are discussed in the conclusion.

2 The basic principle

Consider a pure sinusoidal signal S(t)= Acosω0t observed for a finite time T. By mul-
tiplying S(t) by another sinusoidal function of frequency ω and integrating over a time
interval of length T, a function L of ω can be defined as:

L(ω)=
1

T

∫ T

0
Acos(ω0t)cos(ωt)dt. (2.1)


