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Abstract. The numerical simulation of non conservative system is a difficult challenge
for two reasons at least. The first one is that it is not possible to derive jump relations
directly from conservation principles, so that in general, if the model description is non
ambiguous for smooth solutions, this is no longer the case for discontinuous solutions.
From the numerical view point, this leads to the following situation: if a scheme is
stable, its limit for mesh convergence will depend on its dissipative structure. This is
well known since at least [1]. In this paper we are interested in the “dual” problem:
given a system in non conservative form and consistent jump relations, how can we
construct a numerical scheme that will, for mesh convergence, provide limit solutions
that are the exact solution of the problem. In order to investigate this problem, we
consider a multiphase flow model for which jump relations are known. Our scheme is
an hybridation of Glimm scheme and Roe scheme.
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Nomenclature

• αi: volume fraction of phase i;

• ρi: density of phase i; ρ=∑i αiρi: average density,

• τi=1/ρi: specific volume of phase i; τ=1/ρ: specific volume,

• Yi =
αiρi

ρ : mass fraction of phase i;

• u: average velocity;

∗Corresponding author. Email addresses: remi.abgrall�inria.fr (R. Abgrall), hkumar�maths.iitd.a.in
(H. Kumar)

http://www.global-sci.com/ 1237 c©2014 Global-Science Press



1238 R. Abgrall and H. Kumar / Commun. Comput. Phys., 15 (2014), pp. 1237-1265

• p: pressure, pi pressure of phase i;

• s specific entropy, si specific entropy of phase i, s=∑iYisi;

• ε i: specific internal energy of phase i;

• ei: internal energy of phase i, ei=ρiε i;

• Ti: temperature of phase i;

• e=∑i αiei: internal energy; E= e+ 1
2 ρu2: total energy

• κi =
∂pi

∂ei
, χi =

∂pi

∂ρi
;

• a: speed of sound, ai speed of sound of phase i.

1 Introduction

In many applications, one needs to consider compressible flows where the fluid is made
of several non mixable phases. Examples can been found in the nuclear industry, the oil
industry, for engines, etc. Another class of applications can be found in the case of high
explosives. In that case, the media is made of several non mixable materials that are so
intimately mixed that their exchange surface is very large. Such a fluid can be modeled by
two compressible fluids, each having its own equation of state, thus its own pressure and
possibly its own velocity. However, in the case of a large inter-facial area, it is legitimate
to assume that the phase pressures and velocities are identical. The same situation occur
for atomized flows.

The model in this case cannot be the simple model of two mass conservation equa-
tions (one for each phase), the momentum conservation equation, a total energy equation
and a last one describing the evolution of the fluid composition written as a simple trans-
port equation. In fact, in the physical model, one may encounter smooth variations of the
volume fractions. In that case, when a shock wave is moving, this implies that the fluids
can be compressed according to their acoustic impedance. A model that describes such a
situation is the Kapila model [2] which can be derived from variants of the Baer and Nun-
ziato [3] model by means of asymptotic expansions, see [4]. Here the small parameter is
related to the inverse of the inter-facial area. The system of PDEs of the Kapila model is
given in section 2. It is written in non conservation form, hence it cannot describe the
structure of shock waves: the classical Rankine-Hugoniot relations do not hold, and the
derivation of jump relation cannot be obtained using the standard techniques.

However, in [5], R. Saurel and coauthors have derived from some heuristic argu-
ments a series of jump relations. Basically, for n phase flows, one has for each phase the
classical Hugoniot relations, supplemented by the fact one has a single pressure. These
relations satisfies all the requirements, in particular for weak shocks, the Hugoniot curves
are tangent to the isentropes. Last, these relations have been validated against numerous
experimental test cases with very severe conditions.


