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Abstract. This article is to discuss the bilinear and linear immersed finite element (IFE)
solutions generated from the algebraic multigrid solver for both stationary and moving
interface problems. For the numerical methods based on finite difference formulation
and a structured mesh independent of the interface, the stiffness matrix of the linear
system is usually not symmetric positive-definite, which demands extra efforts to de-
sign efficient multigrid methods. On the other hand, the stiffness matrix arising from
the IFE methods are naturally symmetric positive-definite. Hence the IFE-AMG algo-
rithm is proposed to solve the linear systems of the bilinear and linear IFE methods
for both stationary and moving interface problems. The numerical examples demon-
strate the features of the proposed algorithms, including the optimal convergence in
both L2 and semi-H1 norms of the IFE-AMG solutions, the high efficiency with proper
choice of the components and parameters of AMG, the influence of the tolerance and
the smoother type of AMG on the convergence of the IFE solutions for the interface
problems, and the relationship between the cost and the moving interface location.
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1 Introduction

In this article, we first consider the following second order elliptic interface problem:
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{

−∇·
(

β∇u
)

= f (X), X∈Ω,
u(X)= g(X), X∈∂Ω,

(1.1)

together with the jump conditions on the interface Γ:

[u]|Γ =0, (1.2a)
[

β
∂u

∂n

]
∣

∣

∣

Γ
=0. (1.2b)

Here, see Fig. 1, without loss of generality, we consider the case in which Ω⊂ IR2 is
an open rectangular domain, and the interface curve Γ is defined by a smooth function
which separates Ω into two sub-domains Ω−, Ω+ such that Ω = Ω−∪Ω+∪Γ, and the
coefficient β(X) is a positive piecewise constant function defined by

β(X)=

{

β−, X∈Ω−,
β+, X∈Ω+.

We will also consider the following parabolic moving interface problem:











ut−∇·(β∇u)= f (t,X), X∈Ω, t∈ (0,Tend],

u(t,X)= g(t,X), X∈∂Ω, t∈ (0,Tend],

u(0,X)=u0(X), X∈Ω,

(1.3)

with the jump condition on a moving interface Γ(t):

[u]|Γ(t)=0, (1.4a)
[

β
∂u

∂n

]∣

∣

∣

Γ(t)
=0. (1.4b)

Without loss of generality, we consider the case in which the interface curve Γ(t) is de-
fined by a smooth function Γ : [0,Tend]→Ω. At any time t ∈ [0,Tend], the interface Γ(t)
separates Ω into two sub-domains Ω+(t) and Ω−(t) such that Ω=Ω+(t)∪Ω−(t)∪Γ(t)
and Γ(t)∩∂Ω=∅. The coefficient function β(t,X) is discontinuous across the interface
Γ(t). For simplicity, we assume β(t,X) is a piece-wise constant function as follows:

β(t,X)=

{

β−, X∈Ω−(t),
β+, X∈Ω+(t).

The stationary interface problems (1.1)-(1.2b) and the moving interface problem (1.3)-
(1.4b) are involved in many applications of engineering and sciences, such as the field
injection problem [25, 77], flow problem [3, 15], electromagnetic problems [4, 8, 43],
shape/toplogy optimization problem [7, 19], and the Stefan problem [11, 62]. These in-
terface problems can be solved by conventional finite difference or finite element meth-
ods with optimal convergence if a body-fitting mesh is utilized [5, 6, 9, 14, 38]. However,


