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Abstract. In this paper we use the Generalized Multiscale Finite Element Method
(GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equa-
tions with high-contrast coefficients. The proposed solution method involves lineariz-
ing the equation so that coarse-grid quantities of previous solution iterates can be re-
garded as auxiliary parameters within the problem formulation. With this convention,
we systematically construct respective coarse solution spaces that lend themselves
to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formula-
tions. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach.
Both methods yield a predictable error decline that depends on the respective coarse
space dimension, and we illustrate the effectiveness of the CG and DG formulations
by offering a variety of numerical examples.
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1 Introduction

Nonlinear partial differential equations represent a class of problems that have applica-
tions in many scientific communities [19, 22, 33, 47, 50]. Forchheimer flow, nonlinear elas-
ticity, and electromagnetics are particular examples of physical processes that are mod-
eled by nonlinear equations [3,19,33,35,50]. In addition to difficulties associated with the
nonlinearity, these types of problems often involve coefficients that exhibit high-contrast,
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heterogeneous behavior. For example, when modeling subsurface flow, the underlying
permeability field is often represented by a high-contrast coefficient in the pressure equa-
tion. One approach for solving a nonlinear equation is to linearize the problem and use
an iterative method for obtaining the solution. For example, a Picard iteration yields an
iterative process where a previous solution iterate is directly used in order to update the
solution at the current iteration. In this case, a final solution is obtained when a suitable
tolerance between the current and previous iteration is reached. While relatively easy to
implement, iterative techniques typically require a repeated number of solves in order
to obtain a convergent solution. In the case of a nonlinear elliptic equation, each itera-
tion requires the numerical solution of a large system of equations that depends on the
previous iterate. Thus, computing solutions on a fully resolved mesh quickly becomes a
prohibitively expensive task. As such, techniques that allow for a more efficient compu-
tational procedure with a suitable level of accuracy are desirable.

The past few decades have seen the development of various multiscale solution tech-
niques for capturing small scale effects on a coarse grid [1,7,30,38,39,41]. The multiscale
finite element methods (MsFEM’s) that we consider in this paper hinge on the construc-
tion of coarse spaces that are spanned by a set of independently computed multiscale
basis functions. The multiscale basis functions are then coupled via a respective global
formulation in order to compute the solution. In particular, solutions may be computed
on a coarse grid while maintaining the fine-scale effects that are embedded into the ba-
sis functions. While standard multiscale methods have proven effective for a variety of
applications (see, e.g., [29–31, 41]), in this paper we consider a more recent framework
in which the coarse spaces may be systematically enriched to converge to the fine grid
solution [9, 27, 28, 45]. More specifically, additional basis functions are chosen based on
localized eigenvalue problems that capture the underlying behavior of the system. In
this case, we may carefully choose the number of basis functions (and dimension of the
coarse space) such that we achieve a desired level of accuracy. In this paper we addition-
ally show that the systematic enrichment of coarse spaces is flexible with respect to the
global formulation that is chosen to couple the resulting basis functions.

To treat the nonlinear elliptic equation considered in this paper we make use of the
Generalized Multiscale Finite Element Method (GMsFEM) which was introduced in [26].
In order to do so, we apply a Picard iteration and treat an upscaled quantity of a previ-
ous solution iterate as a parameter in the problem. With this convention we follow an
offline-online procedure in which the coarse space construction is split into two distinct
stages; offline and online (see [12, 14, 20, 45, 49]). The main goal of this approach is to
allow for the efficient construction of an online space (and an online solution) for each
fixed parameter value and iteration. In the process, we precompute a larger-dimensional,
parameter-independent offline space that accounts for an appropriate range of parameter
values that may be used in the online stage. As construction of the offline space will con-
stitute a one-time preprocessing step, only the online space will require additional work
within the solution procedure. In the offline stage we first choose a fixed set of parameter
values and generate an associated set of ”snapshot” functions by solving localized prob-


