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Abstract. In this paper, we study numerically quantized vortex dynamics and their in-
teraction in the two-dimensional (2D) Ginzburg-Landau equation (GLE) with a dimen-
sionless parameter ε>0 on bounded domains under either Dirichlet or homogeneous
Neumann boundary condition. We begin with a review of the reduced dynamical laws
for time evolution of quantized vortex centers in GLE and show how to solve these
nonlinear ordinary differential equations numerically. Then we present efficient and
accurate numerical methods for discretizing the GLE on either a rectangular or a disk
domain under either Dirichlet or homogeneous Neumann boundary condition. Based
on these efficient and accurate numerical methods for GLE and the reduced dynami-
cal laws, we simulate quantized vortex interaction of GLE with different ε and under
different initial setups including single vortex, vortex pair, vortex dipole and vortex
lattice, compare them with those obtained from the corresponding reduced dynami-
cal laws, and identify the cases where the reduced dynamical laws agree qualitatively
and/or quantitatively as well as fail to agree with those from GLE on vortex inter-
action. Finally, we also obtain numerically different patterns of the steady states for
quantized vortex lattices under the GLE dynamics on bounded domains.
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1 Introduction

A quantized vortex in two-dimensional (2D) space is a particle-like or topological defect,
whose center is zero of the order parameter, possessing localized phase singularity with
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integer topological charge called also as winding number or index. Quantized vortices
have been widely observed in many different physical systems, such as the liquid helium,
type-II superconductors, Bose-Einstein condensates, atomic gases and nonlinear optics
[1, 5, 10, 12, 23, 28]. They are key signatures of superconductivity and superfluidity and
their study retains as one of the most important and fundamental problems since they
were predicted by Lars Onsager in 1947 in connection with superfluid Helium.

In this paper, we are concerned with the vortex dynamics and interactions in 2D
Ginzburg-Landau equation (GLE) for modelling superconductivity [15, 23, 25]:

λε∂tψ
ε(x,t)=∆ψε+

1

ε2
(1−|ψε|2)ψε, x∈Ω, t>0, (1.1)

with initial condition
ψε(x,0)=ψε

0(x), x∈ Ω̄, (1.2)

and under either Dirichlet boundary condition (BC)

ψε(x,t)= g(x)= eiω(x), x∈∂Ω, t≥0, (1.3)

or homogeneous Neumann BC

∂ψε(x,t)

∂n
=0, x∈∂Ω, t≥0. (1.4)

Here, Ω⊂R
2 is a 2D smooth and bounded domain, t is time, x=(x,y)∈R

2 is the Carte-
sian coordinate vector, ψε :=ψε(x,t) is a complex-valued function describing the ‘order
parameter’ for a superconductor, ω is a given real-valued function, ψε

0 and g are given
smooth and complex-valued functions satisfying the compatibility condition ψε

0(x)=g(x)

for x∈ ∂Ω, n=(n1,n2) and n⊥=(−n2,n1)∈R
2 satisfying |n|=

√

n2
1+n2

2 = 1 are the out-

ward normal and tangent vectors along ∂Ω, respectively, ε> 0 is a given dimensionless
constant, and λε is a positive function of ε. Denote the Ginzburg-Landau (GL) functional
(‘energy’) as [15, 23, 25]

E ε(t) :=
∫

Ω

[

1

2
|∇ψε|2+ 1

4ε2

(

|ψε|2−1
)2
]

dx=E ε
kin(t)+E ε

int(t), t≥0, (1.5)

where the kinetic and interaction parts are defined as

E ε
kin(t) :=

1

2

∫

Ω
|∇ψε|2dx, E ε

int(t) :=
1

4ε2

∫

Ω

(

|ψε|2−1
)2

dx, t≥0,

then it is easy to see that, for GLE (1.1) with either Dirichlet BC (1.3) or homogeneous
Neumann BC (1.4) for general domain Ω, or periodic BC when Ω is a rectangle, the GL
functional decreases when time increases, i.e.

d

dt
E ε(t)=−λε

∫

Ω
|∂tψ

ε|2dx≤0, t≥0.


