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3 CNRS; Institut de Mathématiques de Toulouse UMR 5219, F-31062
Toulouse, France.

Received 30 October 2010; Accepted (in revised version) 18 March 2011

Communicated by Kun Xu

Available online 5 September 2011

Abstract. This paper is devoted to the numerical approximation of a degenerate
anisotropic elliptic problem. The numerical method is designed for arbitrary space-
dependent anisotropy directions and does not require any specially adapted coordi-
nate system. It is also designed to be equally accurate in the strongly and the mildly
anisotropic cases. The method is applied to the Euler-Lorentz system, in the drift-fluid
limit. This system provides a model for magnetized plasmas.
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1 Introduction

This paper discusses the numerical resolution of degenerate anisotropic elliptic problems
of the form:

−(b·∇)
(
∇·(bφε)

)
+εφε = f ε, in Ω, (1.1a)

(b·ν)∇·
(

bφε
)
=0, on ∂Ω, (1.1b)
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where Ω ⊂R
2 or R

3, f ε is a given function, b is a normalized vector field defining the
anisotropy direction and ε measures the strength of this anisotropy. In this expression ∇
and ∇· are respectively the gradient and divergence operators. The unit outward normal
at x∈ ∂Ω is denoted by ν. In the context of plasmas, ε is related to the gyro period (i.e.,
the period of the gyration motion of the particles about the magnetic field lines) and
the anisotropy direction b satisfies b=B/|B| with the magnetic field B verifying ∇·B=0.
Eq. (1.1a) may also arise in other contexts, such as rapidly rotating flows, shell theory and
may also be found when special types of semi-implicit time discretization of diffusion
equations are used.

The elliptic equation is not in the usual divergence form due to an exchange between
the gradient and divergence operators. However, the methodology would apply equally
well to the operator ∇·((b⊗b)·∇φ)), up to some simple changes. The expression consid-
ered here is motivated by the application to the Euler-Lorentz system of plasmas. This
application has already been considered in a previous study [13] but we introduce two
important developments. First the present numerical method does not request the devel-
opment of a special coordinate system adapted to b. In [13], b was assumed aligned with
one coordinate direction. Second, the present paper considers Neumann boundary con-
ditions instead of Dirichlet ones as in [13]. Although seemingly innocuous, this change
brings in a considerable difficulty, linked with the degeneracy of the limit problem, as
explained below.

A classical discretization of problem (1.1a), (1.1b) leads to an ill-conditioned linear
system as ε→0. Indeed setting formally ε=0 in (1.1a), (1.1b), we get:

−(b·∇)∇·(bψ)= f (0) , in Ω, (1.2a)

(b·ν)∇·(bψ)=0, on ∂Ω, (1.2b)

with f (0) = limε→0 f ε. The homogeneous system associated to (1.2a), (1.2b) admits an infi-
nite number of solutions, namely all functions ψ satisfying ∇·(bψ)=0. This degeneracy
results from the Neumann boundary conditions (1.2b) and would also occur if periodic
boundary conditions were used. On the other hand, (1.2a) is not degenerate if supple-
mented with Dirichlet or Robin conditions, which was the case considered in [13]. A
standard numerical approximation of (1.2a), (1.2b) generates a matrix whose condition
number blows up as ε→0, leading to very time consuming and/or poorly accurate solu-
tion algorithms.

To bypass these limitations, we follow the idea introduced in [12] and use a decom-
position of the solution in its average along the b-field lines and a fluctuation about this
average. This decomposition ensures an accurate computation of the solution for all val-
ues of ε. In [12], this decomposition approach was developed for a uniform b and a
coordinate system with one coordinate direction aligned with b. To extend this approach
to arbitrary anisotropy fields b, a possible way is to use an adapted curvilinear coordinate
system with one coordinate curve tangent to b. This is the route followed by [4], which
proposes an extension of [12] in the context of ionospheric plasma physics, where the


