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Abstract. Many partial differential equations can be written as a multi-symplectic
Hamiltonian system, which has three local conservation laws, namely multi-symplec-
tic conservation law, local energy conservation law and local momentum conserva-
tion law. In this paper, we systematically give a unified framework to construct
the local structure-preserving algorithms for general conservative partial differential
equations starting from the multi-symplectic formulation and using the concatenating
method. We construct four multi-symplectic algorithms, two local energy-preserving
algorithms and two local momentum-preserving algorithms, which are independent
of the boundary conditions and can be used to integrate any partial differential equa-
tions written in multi-symplectic Hamiltonian form. Among these algorithms, some
have been discussed and widely used before while most are novel schemes. These al-
gorithms are illustrated by the nonlinear Schrödinger equation and the Klein-Gordon-
Schrödinger equation. Numerical experiments are conducted to show the good per-
formance of the proposed methods.
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1 Introduction

Recently, there has been an increased emphasis on constructing numerical algorithms to
preserve the intrinsic properties of the original problems in the continuous dynamical
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systems. The earliest attempt can go back to 1928 when Courant, Friedrichs and Lewy
constructed a 5-point finite difference scheme which yields a global invariant form [1].
Methods that can conserve at least some of the structural properties of systems are called
geometric integrators or structure-preserving algorithms. Lots of researchers have ob-
tained a series of important results on construction and theory analysis of structure-
preserving algorithms for Hamiltonian ordinary differential equations (ODEs) [2–4]. It is
known that Hamiltonian partial differential equations (PDEs) arise as models in meteo-
rology and weather prediction, nonlinear optics, solid mechanics and electromagnetism,
cosmology and quantum field theory, and so on. As geometric integration has gained
remarkable success in the numerical analysis of ODEs, it is desirable to extend the idea
of geometric integration to solve PDEs. A popular method to treat Hamiltonian PDEs is
the so-called method of lines in which a PDE is first discretized in space direction result-
ing in a large system of Hamiltonian ODEs. Then the resulted ODEs are integrated by a
structure-preserving algorithm. However, no method is mature to guarantee the resulted
ODEs to be Hamiltonian.

The introduction of multi-symplectic formulation [5, 6] provides a new way to solve
the conservative PDEs based on multi-symplectic geometric integrators. Numerous con-
servative PDEs, such as the nonlinear Schrödinger (NLS) equation, the Klein-Gordon-
Schrödinger (KGS) equation, the Korteweg-de Vries (KdV) equation, the Camassa-Holm
(CH) equation, the Maxwell equation, the Landau-Lifshitz (LL) equation and so on can
be written in this form, from which the intrinsic multi-symplectic conservation law, lo-
cal energy and momentum conservation laws can be naturally derived. Compared with
the classical Hamiltonian form, multi-symplectic Hamiltonian form considers space and
time on an equal footing and is well suited for numerical discretization methods that em-
phasize local properties. Afterwards, to preserve the multi-symplectic structure, multi-
symplectic algorithms developed very fast and a lot of important achievements have
been obtained in past decades. For more details, please refer to review articles [7] and
references therein.

We all know that the physical conservation law in regard of system energy or mo-
mentum plays a significant role in the study of properties of solutions, especially in the
theory of solitons. Extensive numerical studies have been developed for the conserva-
tion of those physical quantities [8–19]. Note that these two physical invariants are local
invariants, which exist in any time-space region exactly independent of boundary con-
ditions. Cai et al. [20] proposed some local energy-preserving for the coupled nonlinear
Schrödinger equation in 2013. Wang et al. [21] also gave several local energy-preserving
schemes for KdV equation. However, these methods in References are not studied sys-
tematically either in their presentations or in their applications, that is to say, they are
investigated for some particular equation. The methods discussed here are, by contrast,
presented systematically and in a unified framework which can be applied to a large
class of Hamiltonian PDEs. In other words, we start from the multi-symplectic formula-
tion and construct a series local structure-preserving algorithms (LSPAs), which can be
refined as a unified framework. Then, we can use this framework to construct LSPAs


