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Abstract. In this work, we study a distributed optimal control problem, in which the
governing system is given by second-order elliptic equations with log-normal coeffi-
cients. To lessen the curse of dimensionality that originates from the representation of
stochastic coefficients, the Monte Carlo finite element method is adopted for numerical
discretization where a large number of sampled constraints are involved. For the so-
lution of such a large-scale optimization problem, stochastic gradient descent method
is widely used but has slow convergence asymptotically due to its inherent variance.
To remedy this problem, we adopt an averaged stochastic gradient descent method
which performs stably even with the use of relatively large step sizes and small batch
sizes. Numerical experiments are carried out to validate our theoretical findings.
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1 Introduction

In many engineering applications involving uncertainty in the input data, a robust force
control is often designed such that the response of governing system is optimal in some
sense [23,27]. These problems can often be formulated as the minimization of an objective
functional subject to partial differential equations (PDEs) with high-dimensional random
inputs. In this case, to overcome the curse of dimensionality and obtain a reliable numer-
ical prediction, the Monte Carlo (MC) methods are typically used in conjunction with

∗Corresponding author. Email addresses: sunqi@csrc.ac.cn (Q. Sun), qd2125@columbia.edu (Q. Du)

http://www.global-sci.com/cicp 753 c©2020 Global-Science Press



754 Q. Sun and Q. Du / Commun. Comput. Phys., 27 (2020), pp. 753-774

the associated Galerkin finite element (FE) approximation in space [12, 24, 33, 43]. How-
ever, the simulation of MC FE solutions typically requires a large number of constrained
equations that may incur an enormous computational cost. As such, efficient algorithms
for solving these large-scale PDE-constrained optimization problems are highly desirable
in practice. On the other hand, for problems where the dimension of stochastic space is
moderate and the solution has a very smooth dependence on the input random variables,
better convergence can be achieved using more sophisticated techniques such as sparse
grid stochastic collocation methods [7, 30, 44], reduced basis methods [6, 8, 49], low-rank
tensor methods [3, 4, 20], etc.

To be specific, we study in this paper the distributed elliptic optimal control problem
with log-normal stochastic coefficients. That is, given a deterministic target function U :
D→R, the control objective is formulated as the minimization of a cost functional

Jβ(u, f )=E
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subject to an elliptic boundary value problem with stochastic coefficient a(x,ω)= eg(x,ω),
namely, for almost every (a.e.) ω in a set of outcomes Ω,




−∇·(a(x,ω)∇u(x,ω))= f (x) in D,

u(x,ω)=0 on ∂D.
(1.2)

Here, and in what follows, D denotes the spatial domain, ∂D its boundary, β a positive
regularization parameter, g(·,ω)= log(a(·,ω)) a normal distributed random field, f the
robust control that belongs to a closed, convex, and nonempty admissible setA⊂ L2(D),
and “∇” means differentiation with respect to (w.r.t.) the spatial variable x∈D.

The stochastic coefficients in (1.2) can be expressed via the Karhumen–Loève (KL)
expansion. To define such an expansion, we assume the known information on g(x,ω)
includes its mean value and covariance function. Since the decay rate for KL eigenvalues
is directly related to the regularity of covariance kernel function [19], the truncated KL
expansion may lead to a high-dimensional problem that suffers from the curse of dimen-
sionality. In contrast to the aforementioned collocation-based approaches, we adopt the
MC FE method for the numerical approximation of robust control as depicted in Fig. 1.
Moreover, the error estimate associated with approximating f ∗ by f ∗h,n is deduced, which
implies that a small mesh size and a large number of sampled constraints are required to
obtain a satisfactory accuracy.

To solve the large-scale optimization problem resulted from the MC FE discretization,
the standard gradient descent (GD) method requires the update of gradient over all sam-
ples, thus demanding repeated and costly solutions of the state and adjoint equations.
While the deployment of high performance computing platforms using scalable algo-
rithms can significantly speed up the computation, they may not be feasible for many
control problems that demand online feedback and miniature design of control devices.


