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Abstract. Stochastic quantities of interest are expanded in generalized polynomial
chaos expansions using stochastic Galerkin methods. An application to hyperbolic dif-
ferential equations does in general not transfer hyperbolicity to the coefficients of the
truncated series expansion. For the Haar basis and for piecewise linear multiwavelets
we present convex entropies for the systems of coefficients of the one-dimensional
shallow water equations by using the Roe variable transform. This allows to obtain
hyperbolicity, wellposedness and energy estimates.
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1 Introduction

Wellposedness is an important property that systems of partial differential equations
(PDEs) should fulfil. Wellposedness means the solution exists, it is unique and the so-
lution depends continuously on initial conditions [35]. Classical solutions to most hy-
perbolic conservation laws have this property, which explains, why these equations are
widely used to model fluid dynamics [49] and other applications like traffic flow [50].
Most physically motivated systems are endowed with an entropy that describes the de-
cay of energy, which in turn guarantees well-posed classical solutions [9,29,45]. A famous
example is the physical entropy for Euler and shallow water equations, see e.g. [18].

Classical solutions, however, exist in finite time only up to the possible occurrence of
shocks [65]. Therefore, weak solutions are considered which are not necessarily unique.
Existence and uniqueness of bounded weak entropy solutions have been shown in [45]
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using entropy-entropy flux pairs. All of these entropy-entropy flux pairs must satisfy
an entropy inequality. In the scalar case a strictly convex flux function and one entropy-
entropy flux pair is sufficient to characterize the entropy solution uniquely [47, 59]. This
result could not been extended to arbitrary systems, when entropies rarely exist or remain
unknown [47]. A single entropy-entropy flux pair, however, manages to weed out all but
one weak solution, as long as a classical solution exists [18]. Thus, an entropy transfers
the wellposedness of classical solutions to a weak formulation.

When initial data are not known exactly, but are given by their probability law or
by statistical moments, the deterministic entropy concepts should be extended to the
stochastic case. A mathematical framework for random entropy solutions of scalar ran-
dom hyperbolic equations is developed in [55, 75]. It is shown that existing statistical
moments in the initial conditions are transferred to the solution. In this non-intrusive
point of view, first pointwise entropy solutions are determined, then the statistics of inter-
est are computed. If there is only interest in the statistics, non-intrusive methods have
been proven successful in previous works [1, 3, 13, 17, 56, 66, 68, 73, 74, 78] and are often
preferred in practice, since deterministic solvers can be used. In particular for shallow
water equations, results are available in several spatial and random dimensions [57].

Desirable deterministic schemes are in smooth regions high-order accurate, but can
also resolve singularities in an essentially nonoscillatory (ENO) fashion. WENO schemes
consist of a weighted combination of local reconstructions on different stencils. Some
schemes allow unstructured grid in higher dimensions [37, 69]. In particular for balance
laws, centered CWENO schemes [15, 16, 43] can reconstruct also the source term.

In contrast to non-intrusive methods, we investigate the intrusive stochastic Galerkin
method. Stochastic processes are represented as orthogonal functions, for instance or-
thogonal polynomials and multiwavelets. These representations are known as general-
ized polynomial chaos (gPC) expansions [7, 25, 30, 79, 82]. Expansions of the stochastic
input are substituted into the governing equations and they are projected to obtain deter-
ministic evolution equations for the gPC coefficients. The applications of this procedure
have been proven successful for diffusion [22, 83] and kinetic equations [8, 38, 42, 70, 85].
In general, results for hyperbolic systems are not available [20,21,53], since desired prop-
erties like hyperbolicity and the existence of entropies are not transferred to the intrusive
formulation. A problem is posed by the fact that the deterministic Jacobian of the pro-
jected system differs from the random Jacobian of the original system and therefore not
even real eigenvalues, which are necessary for hyperbolicity, are guaranteed in general.

In particular for a stochastic Galerkin formulation of shallow water equations, the
loss of hyperbolicity and hence the loss of all entropy-entropy flux pairs is proven in [21,
Prop. 2]. Also stochastic Galerkin formulations for isothermal Euler equations are in
general not hyperbolic [24, 40].

So far, a serious problem for both non- and intrusive methods remains the conver-
gence in the stochastic space. Methods are desirable that allow estimates and conver-
gence results for a smooth dependency on the stochastic input. Convergence results in
previous works are based on smoothness assumptions, although solutions to hyperbolic


