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Abstract. We develop a novel numerical method for solving the nonlinear filtering
problem of jump diffusion processes. The methodology is based on numerical approx-
imation of backward stochastic differential equation systems driven by jump diffusion
processes and we apply adaptive meshfree approximation to improve the efficiency of
numerical algorithms. We then use the developed method to solve atom tracking prob-
lems in material science applications. Numerical experiments are carried out for both
classic nonlinear filtering of jump diffusion processes and the application of nonlinear
filtering problems in tracking atoms in material science problems.
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1 Introduction

The nonlinear filtering problem is one of the key missions in data assimilation, in which
observations of a system are incorporated into the state of a numerical model of that
system. Mathematically, the nonlinear filtering problem is to obtain, recursively in time,
the best estimate of the state of unobservable stochastic dynamics S= {St : t≥ 0}, based
on an associated observation process, M = {Mt : t≥ 0}, whose values are a function of
S after corruption by noises. This suggests the optimal filtering problem of obtaining
the conditional distribution of the state St from the observations up until time t, which
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achieves the best estimate of this distribution, in the squared error sense, based on the
available observations.

The nonlinear filtering theory finds its applications in numerous scientific and engi-
neering research areas, such as target tracking [17, 34], signal processing [26, 38], image
processing [51, 52], biology [16, 37, 53], or mathematical finance [10, 19, 21]. Some of the
pioneer contributions to the development of nonlinear filters are due to Kushner [36] and
Stratonovich [54]. Later, Zakai [59] introduced an alternative approach to the computa-
tion of the nonlinear filter by developing the so-called Zakai equation, which is a stochas-
tic partial differential equation (SPDE), and the best estimate of the nonlinear filter, i.e. the
conditional distribution, is represented by the solution of the Zakai equation. Although
the Zakai’s approach produces the “exact” solution of the nonlinear filtering problem in
theory, solving the SPDEs numerically can be extraordinarily difficult, especially when
the state processes are in high dimensions [5,23,32,60]. A more widely accepted method
by practitioners to solve the nonlinear filtering problem is the sequential Monte Carlo
approach, which is also known as the particle filter method [4, 11, 13, 18, 24, 33, 40, 41].
The particle filter method uses a number of independent random variables, called parti-
cles, sampled directly from the state space to represent the prior probability, and updates
the prior by including the new observation to get the posterior. This particle system is
properly located, weighted and propagated recursively according to Bayes’ theorem. As
a Monte Carlo approach, with sufficient large number of samples the particle filter pro-
vides an accurate representation of the state probability density function (pdf) as desired
in the nonlinear filtering problem. Convergence of a particle filter to the optimal filter
was shown under certain conditions [14, 15, 27]. In addition to the Zakai’s approach and
Monte Carlo type approach, the authors have developed an alternative method, which
solves the nonlinear filtering problem through a forward backward doubly stochastic
differential equations (BDSDEs) system. The theoretical basis of the BDSDEs approach is
the fact that the BDSDEs system is equivalent to a parabolic type SPDE and the solution
of that system is the conditional distribution of the state as required in the nonlinear fil-
tering problem [3,6–8]. In this connection, it produces the exact solution of the nonlinear
filtering problem, just like the Zakai’s approach. In the meantime, as a stochastic ordinary
differential equation (SDE) approach, it also relies on stochastic sampling, just like the
particle filter method. Therefore, the BDSDEs approach builds the bridge between the
Zakai’s approach and the Monte Carlo type approach.

In this paper, we consider a more general nonlinear filtering problem – the nonlinear
filtering problem for jump diffusion processes, in which the state process St is a jump
diffusion process and the state dynamic is perturbed by both traditional Gaussian noises
and other kinds of Lévy type noises. Different from classical nonlinear filtering problems,
numerical methods to solve the nonlinear filtering problem for jump diffusion processes
are not well developed. The existing methods for solving this type of problems focus
on numerical approximation for its corresponding Zakai equation [43, 49, 50]. However,
due to the nonlocal behavior of the state dynamics as a jump diffusion process, the corre-
sponding Zakai equation contains fractional derivatives in spatial dimension, which is a


