
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2019-0168

Vol. 27, No. 2, pp. 379-411
February 2020

Better Approximations of High Dimensional Smooth

Functions by Deep Neural Networks with Rectified

Power Units

Bo Li2,1,†, Shanshan Tang3,†,‡ and Haijun Yu1,2,∗

1 NCMIS & LSEC, Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China.
2 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China.
3 China Justice Big Data Institute, Beijing 100043, China.

Received 30 September 2019; Accepted (in revised version) 24 October 2019

Abstract. Deep neural networks with rectified linear units (ReLU) are getting more
and more popular due to their universal representation power and successful appli-
cations. Some theoretical progress regarding the approximation power of deep ReLU
network for functions in Sobolev space and Korobov space have recently been made
by [D. Yarotsky, Neural Network, 94:103-114, 2017] and [H. Montanelli and Q. Du,
SIAM J Math. Data Sci., 1:78-92, 2019], etc. In this paper, we show that deep net-
works with rectified power units (RePU) can give better approximations for smooth
functions than deep ReLU networks. Our analysis bases on classical polynomial ap-
proximation theory and some efficient algorithms proposed in this paper to convert
polynomials into deep RePU networks of optimal size with no approximation error.
Comparing to the results on ReLU networks, the sizes of RePU networks required to
approximate functions in Sobolev space and Korobov space with an error tolerance

ε, by our constructive proofs, are in general O(log 1
ε ) times smaller than the sizes of

corresponding ReLU networks constructed in most of the existing literature. Compar-
ing to the classical results of Mhaskar [Mhaskar, Adv. Comput. Math. 1:61-80, 1993],
our constructions use less number of activation functions and numerically more stable,
they can be served as good initials of deep RePU networks and further trained to break
the limit of linear approximation theory. The functions represented by RePU networks
are smooth functions, so they naturally fit in the places where derivatives are involved
in the loss function.
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1 Introduction

Artificial neural network(ANN), whose origin may date back to the 1940s [1], is one of
the most powerful tools in the field of machine learning. Especially, it became domi-
nant in a lot of applications after the seminal works by Hinton et al. [2] and Bengio et
al. [3] on efficient training of deep neural networks (DNNs), which pack up multi-layers
of units with some nonlinear activation function. Since then, DNNs have greatly boosted
the developments in different areas including image classification, speech recognition,
computational chemistry and numerical solutions of high-dimensional partial differen-
tial equations and scientific problems, etc., see e.g. [4–12] to name a few.

The success of DNNs relies on two facts: 1) DNN is a powerful tool for general func-
tion approximation; 2) Efficient training methods are available to find minimizers with
good generalization ability. In this paper, we focus on the first fact. It is known that artifi-
cial neural networks can approximate any C0 and L1 functions with any given error toler-
ance, using only one hidden layer (see e.g. [13,14]). However, it was realized recently that
deep networks have better representation power( see e.g. [15–17]) than shallow networks.
One of the commonly used activation functions with DNN is the so called rectified lin-
ear unit (ReLU) [18], which is defined as σ(x)=max(0,x). Telgarsky [16] gave a simple
and elegant construction showing that for any k, there exist k-layer, O(1) wide ReLU
networks on one-dimensional data, which can express a sawtooth function on [0,1] with
O(2k) oscillations. Moreover, such a rapidly oscillating function cannot be approximated
by poly(k)-wide ReLU networks with o(k/log(k)) depth. Following this approach, sev-
eral other works proved that deep ReLU networks have better approximation power than
shallow ReLU networks [19–22]. In particular, for Cβ-differentiable d-dimensional func-
tions, Yarotsky [21] proved that the number of parameters needed to achieve an error

tolerance of ε is O(ε−
d
β log 1

ε ). Petersen and Voigtlaender [22] proved that for a class of d-
dimensional piecewise Cβ continuous functions with the discontinuous interfaces being

Cβ continuous also, one can construct a ReLU neural network with O((1+ β
d )log2(2+β))

layers, O(ε−
2(d−1)

β ) nonzero weights to achieve ε-approximation. The complexity bound
is sharp. For analytic functions, E and Wang [23] proved that using ReLU networks with
fixed width d+4, to achieve an error tolerance of ε, the depth of the network depends on
log 1

ε instead of ε itself. We also want to mention that the detailed relations between ReLU
networks and linear finite elements have been studied by He et al. [24]. And recent work
by Opschoor, Peterson and Schwab [25] reveals the connection between ReLU DNNs and
high-order finite element methods.


