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Abstract. An efficient algorithm is proposed for Bayesian model calibration, which
is commonly used to estimate the model parameters of non-linear, computationally
expensive models using measurement data. The approach is based on Bayesian stat-
istics: using a prior distribution and a likelihood, the posterior distribution is ob-
tained through application of Bayes’ law. Our novel algorithm to accurately determine
this posterior requires significantly fewer discrete model evaluations than traditional
Monte Carlo methods. The key idea is to replace the expensive model by an inter-
polating surrogate model and to construct the interpolating nodal set maximizing the
accuracy of the posterior. To determine such a nodal set an extension to weighted
Leja nodes is introduced, based on a new weighting function. We prove that the con-
vergence of the posterior has the same rate as the convergence of the model. If the
convergence of the posterior is measured in the Kullback–Leibler divergence, the rate
doubles. The algorithm and its theoretical properties are verified in three different test
cases: analytical cases that confirm the correctness of the theoretical findings, Burgers’
equation to show its applicability in implicit problems, and finally the calibration of
the closure parameters of a turbulence model to show the effectiveness for computa-
tionally expensive problems.

AMS subject classifications: 62F15, 65D0

Key words: Bayesian model calibration, interpolation, Leja nodes, surrogate modeling.

1 Introduction

Estimating model parameters from measurements is a problem of frequent occurrence
in many fields of engineering and many different approaches exist to solve this prob-
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lem. We consider non-linear calibration problems (or inverse problems) where a forward
evaluation of the model is computationally expensive. The approach we follow is of a
stochastic nature: the unknown parameters are modeled using probability distributions
and information about these parameters is inferred using Bayesian statistics. This ap-
proach is often called Bayesian model calibration.

Bayesian model calibration [19, 32, 33] is a systematic way to calibrate the paramet-
ers of a computational model. By means of a statistical model to describe the relation
between the model and the data, the calibrated parameters are obtained in the form of
a random variable (called the posterior) by means of Bayes’ law. These random variables
can then be used to assess the uncertainty in the model and to make future predictions.
This procedure is well-known in the field of Bayesian statistics, where the goal is to infer
unmeasured quantities from data. The calibration approach has already been applied
many times, for example to calibrate the closure parameters of turbulence models [7,11].
A similar example is considered in this work.

Possibly the largest drawback of Bayesian model calibration is the expensive sampling
procedure that is necessary. Because the posterior depends to a large extent on the model,
which is only known implicitly (e.g. a computer code numerically solving a partial differ-
ential equation), determining a sample from the posterior is mostly done using Markov
chain Monte Carlo (MCMC) methods [14, 25], requiring many expensive model eval-
uations. Improvements have been made to accelerate these MCMC methods, e.g. the
DREAM algorithm [39] or adaptive sampling [42]. Replacing the sampling procedure
itself is also possible, e.g. methods based on sparse grids [6,22] or Approximate Bayesian
Computation [2, 9, 20]. However, this encompasses stringent assumptions on the statist-
ical model or still requires many model runs as the shape of the posterior is unknown.

A different approach is followed in the current article. In essence we are follow-
ing the approach of Marzouk et al. [24], which has been used several times in literat-
ure [1, 4, 23, 28, 31, 44–46]. The key idea in our procedure is to replace the model in the
calibration step with a surrogate (or response surface) that approximates the computation-
ally expensive model. MCMC can then be used to sample the resulting posterior without
a large computational overhead.

Various approaches to construct this surrogate in a Bayesian context exist, for example
Gaussian process emulators [36] or non-intrusive polynomial approximations [43]. In this
work the latter is considered, because polynomial approximations provide high order (up
to exponential) convergence for sufficiently smooth functions. Contrary to the commonly
used pseudo-spectral projection methods, which are commonly known as generalized
Polynomial Chaos Expansions, we choose to use interpolation of the computationally
expensive model. The reason for this is that the error of a polynomial interpolant is usu-
ally measured using the absolute error (the L∞ norm), contrary to the mean squared error
(the L2 norm) that is used for the pseudo-spectral approaches. As the model is used as in-
put in the Bayesian analysis, having absolute error bounds on the surrogate significantly
simplifies the analysis. Moreover, the convergence of a pseudo-spectral expansion deteri-
orates significantly if the surrogate is not constructed using the statistical model [21]. This


