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Abstract. In this paper, the Riemann solutions of a reduced 6×6 blood flow model
in medium-sized to large vessels are constructed. The model is nonstrictly hyperbolic
and non-conservative in nature, which brings two difficulties of the Riemann problem.
One is the appearance of resonance while the other one is loss of uniqueness. The
elementary waves include shock wave, rarefaction wave, contact discontinuity and
stationary wave. The stationary wave is obtained by solving a steady equation. We
construct the Riemann solutions especially when the steady equation has no solution
for supersonic initial data. We also verify that the global entropy condition proposed
by C.Dafermos can be used here to select the physical relevant solution. The Riemann
solutions may contribute to the design of numerical schemes, which can apply to the
complex blood flows.
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1 Introduction

A simple set of equations for the blood flow in medium-length to large arteries and veins
are given by [28] 




At+(Au)x=0,

(Au)t+(Au2)x+
A

ρ
px =−Ru,

(1.1)

where A(x,t) is the cross section area of the vessel, ρ,p,u represent the density, the pres-
sure and the averaged velocity of the blood, respectively. We treat ρ as a constant. R is the
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flow resistance per unit length of the tube, assumed to be a known function here. See [27]
for more details.

To complete the system, an additional condition on the pressure p is provided by the
tube law, which is analogous to the state equation of fluid flows. Following [23], we have
the tube law

p= pe(x,t)+ψ(A;AE,K), (1.2)

where

ψ(A;AE,K)=K(x)
(
αm−αn

)
, α=

A

AE
. (1.3)

The pe is the external pressure of the vessel. K is the stiffness coefficient of the vessel,
which represents the elastic properties of the vessel. AE is the cross section area at equi-
librium state. m ≥ 0 and n≤ 0 are two constants. For flows in arteries, m = 1/2, n= 0,
see [22]. In this paper, we take 0<m<1, n=0 for simplicity.

In [28], Toro and Siviglia took pe,K and AE as a function of x only. Moreover, they
added the following conditions to complete system (1.1)

∂t pe =0, ∂tK=0, ∂t AE=0. (1.4)

Substituting (1.3) into the second equation of (1.1), we have

(Au)t+(Au2)x+
A

ρ
ψA Ax+

A

ρ
ψKKx+

A

ρ
ψAE

(AE)x+
A

ρ
(pe)x =−Ru. (1.5)

Following Toro and Siviglia [28], we add an advection equation for a passive tracer φ
representing the concentration of a chemical species. The tracer is transported passively
with the fluid speed, so we have

∂t(Aφ)+∂x(Auφ)=0. (1.6)

The advective equation is decoupled from the other equations. We note (1.6) does not
add new difficulties to the Riemann problem. But for future applications, it is convenient
to consider all six equations as follows

∂tU+Q(U)∂xU=S(U), (1.7)

where U=
(
u,A,K,AE,pe,φ

)
, and

Q(U)=




u
1

ρ
ψA

1

ρ
ψK

1

ρ
ψAE

1

ρ
0

A u 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 u




, S(U)=




−
Ru

A
0
0
0
0
0




. (1.8)


