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Abstract. The goal of this paper is to propose fully discrete local discontinuous Galerkin
(LDG) finite element methods for the Cahn-Hilliard-Navier-Stokes (CHNS) equation,
which are shown to be unconditionally energy stable. In details, using the convex
splitting principle, we first construct a first order scheme and a second order Crank-
Nicolson scheme for time discretizations. The proposed schemes are shown to be un-
conditionally energy stable. Then, using the invariant energy quadratization (IEQ) ap-
proach, we develop a novel linear and decoupled first order scheme, which is easy to
implement and energy stable. In addition, a semi-implicit spectral deferred correction
(SDC) method combining with the first order convex splitting scheme is employed
to improve the temporal accuracy. Due to the local properties of the LDG methods,
the resulting algebraic equations at the implicit level is easy to implement and can be
solved in an explicit way when it is coupled with iterative methods. In particular, we
present efficient and practical multigrid solvers to solve the resulting algebraic equa-
tions, which have nearly optimal complexity. Numerical experiments of the accuracy
and long time simulations are presented to illustrate the high order accuracy in both
time and space, the capability and efficiency of the proposed methods.
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1 Introduction

The Cahn-Hilliard-Navier-Stokes (CHNS) phase field model arises as a diffuse interface
model for the flow of two immiscible and incompressible fluids [1]. Let Ω be a bounded
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convex polygonal domain in R
d(d≤3). The non-dimensional CHNS equation takes the

following form 



φt=∇·(M(φ)∇µ)−∇·(φu), in ΩT,

µ=F′(φ)−ε2∆φ, in ΩT,

ut−
1

Re
∆u+u·∇u+∇p=−

ε−1

We∗
φ∇µ, in ΩT,

∇·u=0, in ΩT,

(1.1)

where ΩT =Ω×(0,T), Re is the Reynolds number, We∗ is the modified Weber number
that measures the relative rates of diffusion and the interface parameter ε determines the
width of the interface separating the two fluids (the interface is of width O(ε)). M(φ)≥0
is a mobility that incorporates the Peclet number, u is the advective velocity, p is the
modified pressure, µ is the chemical potential, φ is the phase field variable and F(φ) =
1
4(1−φ2)2 is the double well potential.

Throughout the paper, we assume that Eq. (1.1) is supplemented with the following
Dirichlet boundary conditions for the velocity u

u=0, on ∂Ω×(0,T), (1.2)

and Neumann boundary conditions for φ and µ

∇φ·n=∇µ·n=0, on ∂Ω×(0,T), (1.3)

where n is the unit normal vector on ∂Ω pointing exterior to Ω, or the periodic boundary
conditions for all variables. Under the above boundary conditions, the CHNS equation
(1.1) is mass conservative and energy dissipative, namely

d

dt
E=−

1

Re

∫

Ω
|∇u|2dx−

ε−1

We∗

∫

Ω
M(φ)|∇µ|2dx≤0, (1.4)

where the energy functional E is defined as

E=
∫

Ω

1

2
|u|2dx+

1

We∗

∫

Ω

(
1

ε
F(φ)+

ε

2
|∇φ|2

)
dx. (1.5)

The energy dissipation law (1.4) is crucial and serves as a guide for the design of nu-
merical schemes. From the numerical point of view, people are particularly interested in
designing numerical schemes that preserve the corresponding energy stability result.

There have been many algorithms developed and simulations performed for the Cahn-
Hilliard equation [4, 12, 23, 30], also for the CHNS equation, for example, the first or-
der [2, 11, 21, 22, 24, 26] and second order [18–20, 26] temporal discretization schemes, in
the framework of finite element methods [28]. Specially, Shen and Yang [27] constructed
two classes of decoupled and unconditionally energy stable schemes for Cahn-Hilliard
phase-field models of two-phase incompressible flows, based on stabilization and convex


