
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2018-0149

Vol. 26, No. 4, pp. 1143-1177
October 2019

Estimating the Finite Time Lyapunov Exponent from

Sparse Lagrangian Trajectories

Yu-Keung Ng1 and Shingyu Leung1,∗

1 Department of Mathematics, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong.

Received 5 June 2018; Accepted (in revised version) 15 November 2018

Abstract. We propose a simple numerical algorithm to estimate the finite time Lya-
punov exponent (FTLE) in dynamical systems from only a sparse number of Lagrangian
particle trajectories. The method first reconstructs the flow field using the radial basis
function (RBF) and then uses either the Lagrangian or the Eulerian approach to de-
termine the corresponding flow map. We also develop a simple algorithm based on
the Schur complement for updating, rather than recomputing, the reconstruction in
the RBF when new trajectory data is made available in applications. We will demon-
strate the effectiveness of the proposed method using examples from autonomous and
aperiodic flows, and also measurements from real-life data.
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1 Introduction

Lagrangian coherent structure (LCS) is an important tool to visualize, understand and
extract useful information in a complex dynamical system. It aims to distinguish sur-
faces of trajectories in a dynamical system and distinguishes regions of phase space that
influence nearby trajectories over a time interval of interest [16]. The concept has been
widely applied in various fields including ocean flows [20, 35], hurricane structures [32],
flight path [4, 36], gravity waves [37] and some bio-inspired fluid flows [11, 25, 26]. One
possible approach to extract such a flow structure is the finite-time Lyapunov exponent
(FTLE) [12, 13, 17, 21, 35]. This quantity measures the magnitude of maximum rate of de-
formation in the distance between neighboring particles across a finite interval of time
with an infinitesimal perturbation in the initial position. The method first computes the
flow map which links the initial location of a particle with the arrival position based on
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the characteristic line. Mathematically these particles in the extended phase space satisfy
the ordinary differential equation (ODE) given by x′(t) = u(x(t),t) with the initial con-
dition x(t0) = x0 and a Lipschitz velocity field u : R

d×R →R
d. We can define the flow

map Φ : R
d →R

d as the mapping which takes the point x0 to the particle location at the
final time t= t0+T, i.e Φ(x0;t0,T)=x(t0+T) with x(t) satisfying the governing ODE. The
FTLE is then defined using the largest eigenvalue of the deformation matrix based on the
Jacobian of this resulting flow map. Following the definition of Haller [12,14,15], one can
see that a possible definition of the LCS is closely related to the ridges of the FTLE fields.

Numerically, on the other hand, because both LCS and FTLE have long been treated
as a Lagrangian property of a continuous dynamical system, most (if not all) numeri-
cal methods are developed based on the traditional Lagrangian ray tracing method by
solving the ODE system using a well-developed numerical integrator. Some other La-
grangian methods are summarized in the review article [1] and we refer any interested
reader to paper and thereafter. We have recently proposed several Eulerian approaches
to compute the FTLE on a fixed Cartesian mesh [22]. The idea is to incorporate the ap-
proach with the Level Set Method (LSM) [27] which allows the flow map to solve a set
of Liouville equations. These hyperbolic partial differential equations (PDE) can then be
solved by any well-established robust and high order accurate numerical methods. Some
other Eulerian methods have also been developed in [23, 39–42].

In all the algorithms we have discussed and have developed so far, we assumed that
the velocity field is given throughout the whole domain. However, in some applications
where the raw data are measured in a Lagrangian fashion given by a finite number of
particle trajectories, the above methods cannot be directly applied. In this work, we will
first consider the problem of constructing the flow map from a finite number of particle
trajectories. The technique proposed in this work will be important and will be served as
a building block for the future development of any Eulerian algorithms.

Mathematically, we label each particle by i and denote the corresponding trajectory
by xi(tk) for i=1,2,··· ,M and k=0,1,··· ,K such that tK=T. This immediately implies that
the flow map at some discrete locations is given by ΦT

0 (xi(0))= xi(tK). Even though the
flow map is defined in general only at scattered locations, we can still apply techniques
such as the radial basis function (RBF) [3] to interpolate the flow map throughout the
whole computational domain. Then the corresponding FTLE can be computed using any
standard method. However, for a small number of particle trajectories, i.e. when M is
small, we do not expect to obtain an accurate reconstruction of the flow map. One simple
reason is that such method ignores all information from any intermediate time levels.
The history from each individual path might provide a more complete description of the
underlying flow. More importantly, with a small number of trajectories given initially,
the provided information would not cover the whole phase space (the x−t space) but
could contain most properties near the attractor of the dynamical system.

Therefore, instead of interpolating the flow map immediately from the given particle
trajectories, we propose to first approximate the velocity at (xi,tk) in the x−t space by
applying any simple finite difference method to the given data. Then, we will interpolate


