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Abstract. Recently, a new family of splitting methods, the so-called vector penalty-
projection methods (VPP) were introduced by Angot et al. [4, 7] to compute the solu-
tion of unsteady incompressible fluid flows and to overcome most of the drawbacks of
the usual incremental projection methods. Two different parameters are related to the
VPP methods: the augmentation parameter r≥0 and the penalty parameter 0< ε≤1.
In this paper, we deal with the time-dependent incompressible Stokes equations with
open boundary conditions using the VPP methods. The spatial discretization is based
on the finite volume scheme on a Marker and Cells (MAC) staggered grid. Further-
more, two different second-order time discretization schemes are investigated: the
second-order Backward Difference Formula (BDF2) known also as Gear’s scheme and
the Crank-Nicolson scheme. We show that the VPP methods provide a second-order
convergence rate for both velocity and pressure in space and time even in the pres-
ence of open boundary conditions with small values of the augmentation parameter r
typically 0≤ r≤1 and a penalty parameter ε small enough typically ε=10−10. The re-
sulting constraint on the discrete divergence of velocity is not exactly equal to zero but
is satisfied approximately as O(εδt) where ε is the penalty parameter (taken as small as
desired) and δt is the time step. The choice r=0 requires special attention to avoid the
accumulation of the round-off errors for very small values of ε. Indeed, it is important
in this case to directly correct the pressure gradient by taking account of the velocity
correction issued from the vector penalty-projection step. Finally, the efficiency and
the second-order accuracy of the method are illustrated by several numerical test cases
including homogeneous or non-homogeneous given traction on the boundary.

AMS subject classifications: 76D05, 76D07, 35Q35

Key words: Vector penalty-projection methods, Navier-Stokes equations, incompressible viscous
flows, open boundary conditions, second-order accuracy.

∗Corresponding author. Email addresses: philippe.angot@univ-amu.fr (P. Angot),
rima.cheaytou@gmail.com (R. Cheaytou)

http://www.global-sci.com/cicp 1008 c©2019 Global-Science Press



P. Angot and R. Cheaytou / Commun. Comput. Phys., 26 (2019), pp. 1008-1038 1009

1 Introduction

The numerical solution of incompressible flows has always been an important subject
in fluid dynamics. The major difficulty in numerically solving unsteady incompressible
Navier-Stokes equations in primitive variable form arises from the fact that the veloc-
ity and the pressure are coupled by the incompressibility constraint at each time step.
There are numerous ways to discretize these equations, see e.g., the short review in [4].
Undoubtedly, the most popular are operator-splitting discretization schemes known as
projection methods. This family of methods has been introduced by Chorin (1968) and
Temam (1969) [14,36]. The interest in projection methods arises from the fact that the com-
putations of the velocity and the pressure are decoupled by a two-step predictor-corrector
procedure which significantly reduces the computational cost. In the first step, an inter-
mediate velocity field is computed by solving momentum equations, ignoring the incom-
pressibility constraint. In the second step, the predicted velocity field is projected onto
a divergence-free vector field in order to get the pressure and the corrected velocity that
satisfies the mass equation using the Helmholtz-Hodge decomposition. However, this
process introduces a new numerical error, often named the splitting error, which must be
at worst of the same order as the time discretization error. These projection methods were
improved by Goda [18] in 1979 and named ”the standard incremental projection meth-
ods”; they were popularized by Van Kan [38] in 1986 who introduced a second-order
incremental pressure-correction scheme. It is well-known that in the projection step, a
difficulty arises from the existence of an artificial pressure Neumann boundary condition
which spoils the numerical solution of the pressure. This phenomenon was corrected by a
variant proposed by Timmermans et al. [37] and analyzed by Guermond et al. [19] under
the name ”rotational incremental projection methods”. A series of fractional step tech-
niques including pressure-correction and incremental projection methods can be found
in the review paper of Guermond et al. [20]. In 1992, Shen [35] introduced a modified
approach which consists in adding a penalty term built from the divergence constraint in
the first step of the scheme of the same form as in Augmented Lagrangian methods [17].
This approach is called ”penalty-projection method”. The same idea was suggested in-
dependently by Caltagirone and Breil [12] with some additional variants and was called
”vector-projection step”. In the same way, Jobelin et al. [30] proposed a numerical scheme
which falls in the category of the penalty-projection method. This scheme generalizes the
prediction step by an augmentation parameter totally independent of the time step and
modifies consistently the projection step; numerical results using finite element approx-
imation show that only small or moderate values of the augmentation parameter r are
sufficient to get accurate results. This numerical scheme was also theoretically analyzed
in [35] and later in [8].

Recently, a new family of methods, the so-called ”vector penalty-projection methods”
(VPP) was proposed in [4]. Two parameters are related to the VPP methods: the aug-
mentation parameter r>0 and the penalty-parameter 0< ε≤1. These methods represent
a compromise between the best properties of both classes: the Augmented Lagrangian


