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Abstract. We propose efficient and accurate numerical methods for computing the
ground state and dynamics of the dipolar Bose-Einstein condensates utilising a
newly developed dipole-dipole interaction (DDI) solver that is implemented with the
non-uniform fast Fourier transform (NUFFT) algorithm. We begin with the three-
dimensional (3D) Gross-Pitaevskii equation (GPE) with a DDI term and present the
corresponding two-dimensional (2D) model under a strongly anisotropic confining
potential. Different from existing methods, the NUFFT based DDI solver removes the
singularity by adopting the spherical/polar coordinates in the Fourier space in 3D/2D,
respectively, thus it can achieve spectral accuracy in space and simultaneously main-
tain high efficiency by making full use of FFT and NUFFT whenever it is necessary
and/or needed. Then, we incorporate this solver into existing successful methods for
computing the ground state and dynamics of GPE with a DDI for dipolar BEC. Exten-
sive numerical comparisons with existing methods are carried out for computing the
DDI, ground states and dynamics of the dipolar BEC. Numerical results show that our
new methods outperform existing methods in terms of both accuracy and efficiency.
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1 Introduction

Since its first experimental creation in 1995 [4, 20, 23], the Bose-Einstein condensation
(BEC) has provided an incredible glimpse into the macroscopic quantum world and
opened a new era in atomic and molecular physics as well as condensated matter physics.
It regains vast interests and has been extensively studied both experimentally and theo-
retically [3, 17, 19, 24, 36, 40, 44]. At early stage, experiments mainly realize BECs of ultra-
cold atomic gases whose properties are mainly governed by the isotropic and short-range
interatomic interactions [44]. However, recent experimental developments on Feshbach
resonances [33], on cooling and trapping molecules [41, 47] and on precision measure-
ments and control [45, 49] allow one to realize BECs of quantum gases with different,
richer interactions and gain even more interesting properties. In particular, the successful
realization of BECs of dipolar quantum gases with long-range and anisotropic dipolar in-
teraction, e.g., 52Cr [26], 164Dy [38] and 168Er [2], has spurred great interests in the unique
properties of degenerate dipolar quantum gases and stimulated enthusiasm in studying
both the ground state [7, 8, 30, 46, 50] and dynamics [13, 14, 22, 28, 35, 43] of dipolar BECs.

At temperatures T much smaller than the critical temperature Tc, the properties of
BEC with long-range dipole-dipole interactions (DDI) are well described by the macro-
scopic complex-valued wave function ψ = ψ(x,t) whose evolution is governed by the
celebrating three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a DDI term.
Moreover, the 3D GPE can be reduced to an effective two-dimensional (2D) version if
the external trapping potential is strongly confined in the z-direction [8, 21]. In a unified
way, the dimensionless GPE with a DDI term in d-dimensions (d=2 or 3) for modeling a
dipolar BEC reads as [6, 7, 14, 25, 35, 50]:
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where t is time, x=(x,y)T ∈R
2 or x=(x,y,z)T ∈R

3, ∗ represents the convolution operator
with respect to spatial variable. The dimensionless constant β describes the strength of
the short-range two-body interactions in a condensate (positive for repulsive interaction,
and resp. negative for attractive interaction), while V(x) is a given real-valued external
trapping potential which is determined by the type of system under investigation. In
most BEC experiments, a harmonic potential is chosen to trap the condensate, i.e.,
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where γx >0, γy >0 and γz>0 are dimensionless constants proportional to the trapping
frequencies in x-, y- and z-direction, respectively. Moreover, λ is a dimensionless constant


