REGULAR ARTICLE

Nitrogen and Hydrogen Adsorption on the Pyrite FeS₂ (100) surface:

First-Principles Study

Xiaolong Hu, Rulin Sun, Yi Cheng, Li Yao, Li Che^{*} and Kun Yang^{*} Department of Physics, Dalian Maritime University, Dalian, 116026, China Received 1 Dec. 2017; Accepted (in revised version) 25 Dec. 2017

Abstract: Based on density functional theory (DFT), the adsorption of atomic and molecular hydrogen and nitrogen on pyrite FeS₂ (100) surface was studied. Both atomic N and N₂ molecule prefer to adsorb on the top Fe site. The adsorption of atomic N on the surface of FeS₂ (100) is more stable than N₂. Adsorption energy calculation shows that the adsorption stability weakens with the increase of the N atom coverage. Hydrogen adsorption differs quite a lot with that of nitrogen adsorption. It is found that atomic H could stably adsorbs on FeS₂ (100) surface at the top Fe site, while H₂ molecule is quite difficult to adsorb on pyrite FeS₂ (100) surfaces. The adsorption stability of atomic hydrogen sharply weakens as the H coverage increases.

Key Words: FeS2; DFT study; Adsorption; Hydrogen; Nitrogen.

1. Introduction

Pyrite FeS₂ is the most abundant mineral in the Earth's crust, which is vitally important in biogeochemistry^[1]. The surfaces and adsorption properties of pyrite FeS₂ play a crucial role in a large number of environmental, geochemical and industrial processes ^[2,3]. Since the potential of FeS₂ in the nitrogen fixation process, the FeS₂ surface has been considered as the catalyst in the synthesis of ammonia. Synthesis of ammonia by Haber-Bosch method needs high temperatures and pressures, making it an energy-intensive industrial process ^[4,5]. Low temperature synthesis of NH₃ from atomic nitrogen and hydrogen on (100) FeS₂ surface showed that NH₃ could be synthesized when the surface is exposed to atomic H^[6]. Molecular N₂ adsorbs on FeS₂ (100) surface at 105 K, while H₂ could adsorbs under similar

* Corresponding authors: yangk@dlmu.edu.cn (K. Yang)

* liche@dlmu.edu.cn (L. Che)

http://www.global-sci.org/cicc

conditions ^[7]. Beam surface scattering demonstrated that D₂S could be produced on pyrite surface to give roughened and reduced surface^[8]. Density Functional theory calculations have also been performed on the adsorption of O₂, CO, NO, NO₂, H₂O, H₂S on the (100) surface of pyrite ^[2,9-11]. However, to the best of our knowledge, no theoretically attempt has been reported on the reactions of FeS₂ surface with atomic or molecular nitrogen and hydrogen, which is quite important reactions in the synthesis of NH₃ on the pyrite surface.

In this work, we studied the adsorption of four adsorbates (atomic N, N₂, atomic H and H₂) on the (100) surface of pyrite FeS₂ by using first-principle calculation. We investigated the geometric structural and adsorption energetic properties of the adsorption of the four adsorbates of different coverage.

2. Computational method

All the calculations in this work were performed by VASP software^[12,13] with projector-augmented wave (PAW) method^[14]. The exchange-correlation potential was treated within the generalized gradient approximation (GGA) using the PW91 functional^[15]. The plane wave cutoff was selected to be 500 eV. The Monkhorst-Pack k-point sampling grid 8×8×8 was used for bulk calculation. For FeS₂ (100) surface and adsorbate-surface systems, a 1×3×3 grid was adopted. Fe $3d^74s^1$, S $3s^23p^4$, N $2s^22p^3$ and H $1s^1$ were treated as valence electrons, respectively. All schematic plots of the slab structures were visualized using VESTA program^[16].

Figure 1: Unit cell of pyrite FeS2

Figure 2: Slab model of FeS₂ (100) surface