
Communications
in
Mathematical
Research
35(3)(2019), 264–272

An Optimal Sixth-order Finite Difference

Scheme for the Helmholtz Equation in

One-dimension

Liu Xu, Wang Hai-na* and Hu Jing
(School of Applied Mathematics, Jilin University of Finance and Economics,

Changchun, 130117)

Communicated by Li Yong

Abstract: In this paper, we present an optimal 3-point finite difference scheme for

solving the 1D Helmholtz equation. We provide a convergence analysis to show that

the scheme is sixth-order in accuracy. Based on minimizing the numerical dispersion,

we propose a refined optimization rule for choosing the scheme’s weight parameters.

Numerical results are presented to demonstrate the efficiency and accuracy of the

optimal finite difference scheme.
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1 Introduction

In this paper, we consider the 1D Helmholtz problem (see [1])

Lu := −d2u

dx2
− k2u = f (1.1)

with the wavenumber k, where unknown u usually represents a pressure field in the fre-

quency domain, and f denotes the source function. The Helmholtz equation has important

applications in acoustic, electromagnetic wave scattering and geophysics. As the solution of

the Helmholtz equation oscillates severely for large wavenumbers, it is still a difficult com-

putational problem to develop efficient numerical schemes to solve the Helmholtz equation

at high wavenumbers.
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To numerically solve the Helmholtz equation, there are mainly finite difference methods

(see [1]–[3]) and finite element methods (see [4]–[5]). The accuracy of finite element methods

is higher than that of finite difference methods. However, the finite difference method is

easily implemented, and its computational complexity is much less than that of the finite

element method. Moreover, by optimizing the parameters in the finite difference formulas,

we can minimize the numerical dispersion and improve the accuracy of the schemes (see [6]).

In this paper, we consider the finite difference method for solving the Helmholtz equation

with constant wavenumbers.

This paper is organized as follows. In Section 2, we construct a 3-point finite difference

scheme for the 1D Helmholtz equation with constant wavenumbers. A convergence analysis

is presented to show that the scheme is sixth-order in accuracy. To choose optimal weight

parameters of the scheme, a refined choice strategy is also proposed. Numerical experiments

are given to demonstrate the efficiency and accuracy of the scheme in Section 3. We show

that the proposed scheme not only improves the accuracy but also reduces the numerical

dispersion significantly. Finally, Section 4 contains the conclusions of this paper.

2 An Optimal Sixth-order Finite Difference Scheme for
the Helmholtz Equation with Constant Wavenumbers

In this section, we propose a 3-point finite difference scheme for the 1D Helmholtz equation

with constant wavenumbers. A convergence analysis is then provided to show that the

scheme is sixth-order in accuracy. We also present a refined optimization rule for choosing

the scheme’s weight parameters based on minimizing the numerical dispersion.

2.1 A Sixth-order Finite Difference Scheme

We next present a 3-point finite difference method for the Helmholtz equation, and then

prove that the proposed scheme is sixth-order in accuracy.

We begin with introducing some useful notations. To describe the finite difference

scheme, we consider the network of grid points xm, where xm := x0 + (m− 1)h. Note that

the same step size h := ∆x is used for the variable x. For each m, we set um := u |x=xm

and km := k |x=xm . Let Dxxu denote the second-order centered-difference approximation

for uxx. We begin with establishing a sixth-order approximation for the term uxx. By the

Taylor expansion, we have

Dxxu = uxx +
h2

12

d4u

dx4
+

h4

360

d6u

dx6
+O(h6). (2.1)

To achieve an approximation of sixth-order with 3 points for uxx, we need to construct an

approximation of fourth-order for
d4u

dx4
, and an approximation of second-order for

d6u

dx6
in

the above equation. Moreover, both of the approximations should use only 3 points.

We rewrite
d4u

dx4
in the following proposition.


