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Abstract: We study in this article the compressible heat-conducting Navier-Stokes

equations in periodic domain driven by a time-periodic external force. The existence

of the strong time-periodic solution is established by a new approach. First, we

reformulate the system and consider some decay estimates of the linearized system.

Under some smallness and symmetry assumptions on the external force, the existence

of the time-periodic solution of the linearized system is then identified as the fixed

point of a Poincaré map which is obtained by the Tychonoff fixed point theorem.

Although the Tychonoff fixed point theorem cannot directly ensure the uniqueness,

but we could construct a set-valued function, the fixed point of which is the time-

periodic solution of the original system. At last, the existence of the fixed point is

obtained by the Kakutani fixed point theorem. In addition, the uniqueness of time-

periodic solution is also studied.
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1 Introduction

In this paper, we prove the existence and uniqueness of the strong time-periodic solution to

the Navier-Stokes equations for compressible heat-conducting fluids:

ρt + div(ρu) = 0, (1.1)
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ρ(ut + (u · ∇)u) +∇P (ρ, θ) = µ∆u+ (µ+ λ)∇divu+ ρf(x, t), (1.2)

ρCν(θt + u · ∇θ) + θPθ(ρ, θ)divu = κ∆θ + Φ(u), (1.3)

when the external force is time-periodic with T -period

f(t+ T, x) = f(t, x)

for all t, x. Here, ρ(x, t), u(x, t) = (u1, · · · , un)(x, t), θ(x, t) represent the fluid density,

velocity and temperature, respectively. t ∈ R is the time and x is the spatial variable

confined to Ω ⊂ Rn with n ≥ 3. P (ρ, θ) is the pressure which is a smooth function of ρ, θ.

µ, λ are the viscosity coefficients which are assumed to satisfy the physical restrictions

µ > 0,
n

2
λ+ µ ≥ 0.

The constants Cν and κ are the heat capacity at constant volume and the coefficient of heat

conductivity. The classical dissipation function Φ(u) is given by

Φ(u) =
µ

2

n∑
i,j=1

(∂iuj + ∂jui)
2 + λ

n∑
j=1

(∂juj)
2.

Throughout the paper, we consider Ω := [−L, L]n. Let the density and the temperature

satisfy the obvious physical requirements∫
Ω

ρdx = ρ̄ > 0, θ|∂Ω = θ̄, (1.4)

where ρ̄ and θ̄ are given constants. Assume that the external force

f(x, t) = (f1, · · · , fn)(x, t)
is spacial periodic with period 2L and satisfies

fi(Yi(x), t) = −fi(x, t), fi(Yj(x), t) = fi(x, t), ∀ i ̸= j, (1.5)

for all i = 1, · · · , n and t ∈ R, where

Yi[x1, · · · , xi, · · · , xn] = [x1, · · · , −xi, · · · , xn].

These conditions are to ensure that the Poincaré inequality holds. In fact, we can consider

the following no-stick boundary conditions for the velocity:

u(t, x) · n(x) = 0, [Du(t, x) · n(x)]τ = 0 on ∂Ω ′, (1.6)

where n(x) denotes the outer normal vector and [w(x, t)]τ is the projection of a vector w(t, x)

on the tangent plane to ∂Ω ′ at the point x. In the n-dimensional case and the boundary

is flat, (1.6) means that the vorticity is perpendicular to the boundary. For the physical

background as well as further properties of flows on domains with frictionless boundary, we

refer to [1]. To simplify the presentation, we restrict our attention to a particular class of

spatial domains, specifically, we assume that Ω ′ is an n-dimensional cube:

Ω ′ = [0, L]n.

Then, the boundary conditions (1.6) read as

ui = 0

on the opposite faces

{xi = 0, xj = [0, L], i ̸= j}
∪
{xi = L, xj = [0, L], i ̸= j},

∂uj

∂xi
= 0


