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Abstract: In this note, we correct a wrong result in a paper of Das et al. with

regard to the comparison between the Wiener index and the Zagreb indices for trees

(Das K C, Jeon H, Trinajstić N. The comparison between the Wiener index and the

Zagreb indices and the eccentric connectivity index for trees. Discrete Appl. Math.,

2014, 171: 35–41), and give a simple way to compare the Wiener index and the Zagreb

indices for trees. Moreover, the comparison between the Wiener index and the Zagreb

indices for unicyclic graphs is carried out.
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1 Introduction

Throughout this paper, let G be a simple connected graph with vertex set V (G) and edge

set E(G). The order and size of G are defined as n = |V (G)| and m = |E(G)|, respectively.
For a simple connected graph G, if m = n− 1, then G is called a tree; if m = n, then G is

called a unicyclic graph. The degree of a vertex vi ∈ V (G) in G is denoted by dG(vi). The

distance between two vertices vi, vj ∈ V (G) is the length of the shortest path between vi

and vj , denoted by dG(vi, vj).
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Molecular descriptors play an important role in mathematical chemistry, especially in

the QSPR and QSAR modeling. Among them, a special place is reserved for the so called

topological indices. Nowadays, there exists a legion of topological indices that found applica-

tions in various areas of chemistry (see [1]). Among the oldest and most studied topological

indices, there are two classical vertex-degree based topological indices: the first Zagreb index

M1(G) and the second Zagreb index M2(G), which are defined, respectively, as

M1(G) =
∑

vi∈V (G)

dG(vi)
2, M2(G) =

∑
vivj∈E(G)

dG(vi)dG(vj).

Many works on the Zagreb indices have been proposed (see [1] and [2] and the references

cited therein). Moreover, one of the oldest and most thoroughly studied distance based on

molecular structure descriptors is the Wiener index (see [3] and [4]):

W (G) =
∑

1≤i<j≤n

dG(vi, vj).

For details on the Wiener index see the review [5] and the references cited therein.

Recently, Das et al.[6] compared the Wiener index and the Zagreb indices for trees.

However, we found that one of the main results in [6] was incorrect.

In this note, we correct the wrong result in [6] and give a simple way to compare the

Wiener index and the Zagreb indices for trees. Besides, the comparison between the Wiener

index and the Zagreb indices for unicyclic graphs is carried out.

2 Comparison Between the Wiener Index and the Za-
greb Indices for Trees

Error 2.1 ([6], Corollary 2.3) Let T be a tree of order n (n > 3). Then W (T ) ≥ M1(T ).

As usual, we denote by K1,n−1 (or Sn) the star of order n (n ≥ 2), Pn the path of order

n (n ≥ 2), and Cn the cycle of order n (n ≥ 3), respectively. Denote by DSp,q (p ≥ q ≥ 1,

n = p+ q + 2), a double star of order n (n ≥ 4) which is constructed by joining the central

vertices of two stars K1,p and K1,q. Other notations and terminology are not defined here

which will conform to those in [7].

Example 2.1 For the star Sn of order n (n ≥ 2),

W (Sn) = (n− 1)2 < n(n− 1) = M1(Sn).

It can be seen that the star Sn (n ≥ 2) is a counter example for Corollary 2.3 in [6].

Lemma 2.1 [8],[9] Let n ≥ 4, and T be a tree of order n. If T � Sn, DSn−3,1 (see Fig.

2.1), then M1(T ) ≤ M1(DSn−3,1) < M1(Sn), M2(T ) < M2(Sn).
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Fig. 2.1 DSn−3,1


