Some Normality Criteria for Families of Meromorphic Functions

CHEN JUN-FAN AND CAI XIAO-HUA

(Department of Mathematics, Fujian Normal University, Fuzhou, 350117)

Communicated by Ji You-qing

Abstract: Let k be a positive integer and \mathcal{F} be a family of meromorphic functions in a domain D such that for each $f \in \mathcal{F}$, all poles of f are of multiplicity at least 2, and all zeros of f are of multiplicity at least k+1. Let a and b be two distinct finite complex numbers. If for each $f \in \mathcal{F}$, all zeros of $f^{(k)} - a$ are of multiplicity at least 2, and for each pair of functions $f, g \in \mathcal{F}$, $f^{(k)}$ and $g^{(k)}$ share b in D, then \mathcal{F} is normal in D.

Key words: meromorphic function, normal family, multiple value, shared value

2010 MR subject classification: 30D45

Document code: A

Article ID: 1674-5647(2018)02-0125-08 **DOI:** 10.13447/j.1674-5647.2018.02.04

1 Introduction and Main Results

First of all we recall that a family \mathcal{F} of functions meromorphic in a plane domain D is called to be normal in D, in the sense of Montel, if every sequence $\{f_n\} \subset \mathcal{F}$ contains a subsequence $\{f_{n_j}\}$ which converges spherically locally uniformly in D, to a meromorphic function or the constant ∞ (see [1]–[3]).

Let f and g be meromorphic in a domain D, $b \in \mathbb{C} \bigcup \{\infty\}$. If f(z) - b and g(z) - b assume the same zeros ignoring multiplicity, we say that f and g share b in D.

Inspired by heuristic Bloch's principle (see [4]–[5]) that there is an analogue in normal family theory corresponding to every Liouville-Picard type theorem, $Gu^{[6]}$ proved the following famous normality criterion related to the well-known Hayman's alternative (see [7]).

Theorem A^[6] Let \mathcal{F} be a family of meromorphic functions in a domain D, k be a positive integer, and b be a nonzero finite complex number. If for each $f \in \mathcal{F}$, $f \neq 0$ and $f^{(k)} \neq b$ in D, then \mathcal{F} is normal in D.

Received date: Jan. 2, 2017.

Foundation item: The NSF (11301076) of China and the NSF (2014J01004) of Fujian Province.

E-mail address: junfanchen@163.com (Chen J F).

Recently, by the idea of shared values, Fang and $Zalcman^{[8],[9]}$ extended Theorem A as follows.

Theorem B^{[8],[9]} Let k be a positive integer and \mathcal{F} be a family of meromorphic functions in a domain D such that for each $f \in \mathcal{F}$, all zeros of f are of multiplicity at least k+2. Let a and $b \neq 0$ be two finite complex numbers. If for each pair of functions f, $g \in \mathcal{F}$, f and g share a, $f^{(k)}$ and $g^{(k)}$ share b in D, then \mathcal{F} is normal in D.

In 1989, Schwick^[10] obtained the following theorem.

Theorem C^[10] Let \mathcal{F} be a family of meromorphic functions in a domain D, n, k be positive integers with $n \geq k+3$, and b be a nonzero finite complex number. If for each $f \in \mathcal{F}$, $(f^n)^{(k)} \neq b$ in D, then \mathcal{F} is normal in D.

In 2009, Li and Gu^[11] improved Theorem C and proved the following result with the idea of shared values.

Theorem D^[11] Let \mathcal{F} be a family of meromorphic functions in a domain D, n, k be positive integers with $n \geq k + 2$, and b be a nonzero finite complex number. If for each pair of functions f, $g \in \mathcal{F}$, $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share b in D, then \mathcal{F} is normal in D.

In 1998, Wang and Fang^[12] proved the following theorem.

It is natural to ask whether Theorem E can be extended in the same way that Theorem B extends Theorem A or Theorem D extends Theorem C. In this paper, we offer such an extension.

Theorem 1.1 Let k be a positive integer and \mathcal{F} be a family of meromorphic functions in a domain D such that for each $f \in \mathcal{F}$, all poles of f are of multiplicity at least 2, and all zeros of f are of multiplicity at least k+1. Let a and b be two distinct finite complex numbers. If for each $f \in \mathcal{F}$, all zeros of $f^{(k)} - a$ are of multiplicity at least 2, and for each pair of functions $f, g \in \mathcal{F}$, $f^{(k)}$ and $g^{(k)}$ share b in D, then \mathcal{F} is normal in D.

Corollary 1.1 Let k be a positive integer and \mathcal{F} be a family of holomorphic functions in a domain D such that for each $f \in \mathcal{F}$, all zeros of f are of multiplicity at least k+1. Let a and b be two distinct finite complex numbers. If for each $f \in \mathcal{F}$, all zeros of $f^{(k)} - a$ are of multiplicity at least 2, and for each pair of functions f, $g \in \mathcal{F}$, $f^{(k)}$ and $g^{(k)}$ share b in D, then \mathcal{F} is normal in D.

Moreover, we can prove the following result by restricting the numbers of the zeros of $f^{(k)} - b$.