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Abstract: We define the topological tail pressure and the conditional pressure for

asymptotically sub-additive continuous potentials on topological dynamical systems

and obtain a variational principle for the topological tail pressure without any addi-

tional assumptions.
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1 Introduction

In this paper, we call (X,T ) a topological dynamical system (TDS for short) if (X, d) is a

compact metric space, T : X → X is a surjective and continuous map with finite topological

entropy.

Topological pressure is a generalization of topological entropy, the theory of topological

pressure, variational principles, equilibrium states and related topics plays a fundamental

role in statistical mechanics, ergodic theory, and dynamical systems (see [1]–[5]).

Ruelle[6] first introduced the notion of the topological pressure and presented the related

variational principle for additive potentials of expansive maps on compact metric spaces.

Later, Walters[7] generalized the result to the general continuous maps on compact metric
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spaces:

Let (X, T ) be a TDS, f : X → R be an arbitrary continuous function and P (T, f) be

the topological pressure of f . Then

P (T, f) = sup

{
hµ(T ) +

∫
fdµ : µ ∈ M(X, T )

}
,

where M(X, T ) denotes the space of all T -invariant measures on X and hµ(T ) denotes the

measure-theoretical entropy of µ.

In [8], Cao et al. defined the topological pressure and set up a variational principle for

sub-additive potentials on general compact metric spaces without any additional assump-

tions. Then Feng et al.[9] extended the result to the case of asymptotically sub-additive

potentials:

Let (X, T ) be a TDS and F = {fn}∞n=1 be an asymptotically sub-additive potentials on

(X, T ). Denote by P (T, F) the topological pressure of F , then

P (T, F) = sup{hµ(T ) + F∗(µ) : µ ∈ M(X, T )},
where

F∗(µ) = lim
n→∞

1

n

∫
fndµ.

Li et al.[10] defined the tail pressure and established a variational principle for continuous

transformations on compact metric spaces:

Let (X, T ) be a TDS, f : X → R be continuous, and P (T, f) be the tail pressure of f .

Then

P (T, f) = sup

{
u(µ) +

∫
fdµ : µ ∈ M(X, T )

}
,

where

u(µ) = lim
k→∞

˜h∞ − hk(µ),

and H = (hk)k∈N is an entropy structure defined on M(X, T ). Moreover, the supremum

can be achieved on the closure of the ergodic measures. When f = 0, the definition is

equivalent with the tail entropy defined in [11]. Ding et al.[12] generalized the result to the

sub-additive potentials:

Let (X,T ) be a TDS, F = {fn}n∈N be a sub-additive potential, and P ∗(T,F) be the

topological pressure of F . Then

P ∗(T,F) = sup{u(µ) + F∗(µ) | µ ∈ M(X,T )}.
Moreover, the supremum can be achieved on the closure of the ergodic measures. When

F = {f}, the result is equivalent to that in [10].

The purpose of this paper is to extend above results to the case of asymptotically sub-

additive potentials. We give a definition of the tail pressure for asymptotically sub-additive

potentials, and establish a variational principle which implies the relation between the tail

pressure and the tail entropy function.

We first introduce the definition of asymptotically sub-additive potentials before formu-

lating our results, we take it from [9].


