The New Structure Theorem of Right-e Wlpp Semigroups

WANG CHUN-RU¹, REN XUE-MING² AND MA SI-YAO²

(1. Huaqing College, Xi'an University of Architecture and Technology, Xi'an, 710043)

(2. Department of Mathematics, Xi'an University of Architecture and Technology, Xi'an, 710055)

Communicated by Du Xian-kun

Abstract: Wlpp semigroups are generalizations of lpp semigroups and regular semigroups. In this paper, we consider some kinds of wlpp semigroups, namely right-ewlpp semigroups. It is proved that such a semigroup S, if and only if S is the strong semilattice of \mathcal{L} -right cancellative planks; also if and only if S is a spined product of a right-e wlpp semigroup and a left normal band.

Key words: wlpp semigroup, right-e wlpp semigroup, spined product

2010 MR subject classification: 08A05

Document code: A

Article ID: 1674-5647(2017)03-0274-07

DOI: 10.13447/j.1674-5647.2017.03.07

1 Introduction

According to Tang^[1], a new generalized Green relation \mathcal{R}^{**} on a semigroup S is defined as follows: for any $a, b \in S$,

 $(a, b) \in \mathcal{R}^{**} \iff [\forall x, y \in S^1, (xa, ya) \in \mathcal{L} \leftrightarrow (xb, yb) \in \mathcal{L}],$

where \mathcal{L} is the usual Green relation. It is easy to verify that \mathcal{R}^{**} is a left congruence on any semigroup and $\mathcal{R} \subseteq \mathcal{R}^{**}$. A semigroup S is said to a wlpp semigroup if each class \mathcal{R}^{**} of S contains an idempotent of S and a = ea for any $a \in S$ and $e \in R_a^{**} \cap E(S)$, where R_a^{**} is the \mathcal{R}^{**} -class of S containing the element a. It is easy to check that a regular semigroup S is a wlpp semigroup and a wlpp semigroup is a generalization of a regular semigroup. In this paper, we consider the following semigroups:

Definition 1.1^[2] A wlpp semigroup S is called a right-e wlpp semigroup if xey = xyeholds for any $e \in E(S)$ and any $x, y \in S^1$ with $x \neq 1$.

Received date: April 22, 2016.

Foundation item: The NSF (11471255) of China, the Scientific Research Project (15JK1411) of Education Department of Shaanxi Provincial Government, and the Scientific Research Project (17KY02) of College.

E-mail address: chunru123@163.com (Wang C R).

We first have the following result for right-e wlpp semigroups which will be frequently used in the sequel.

Lemma 1.1 If S is a right-e wlpp semigroup, then every \mathcal{R}^{**} -class of S contains a unique idempotent.

Proof. Suppose that S is a right-e wlpp semigroup and $a \in S$. Then there exists an idempotent $e \in R_a^{**} \cap E(S)$ such that a = ea. Hence,

ae = eae = eea = ea = a.

Now if $f \in R_a^{**} \cap E(S)$, then

$$f = ef = fe = e.$$

We denote the unique idempotent in R_a^{**} of S by a^+ . Since S is a right-e wlpp semigroup, it follows that

$$aa^+ = a = a^+a, \qquad a \in S.$$

Lemma 1.2 If S is a right-e wlpp semigroup, then \mathcal{R}^{**} is a congruence on S.

Proof. It is easy to see that the relation \mathcal{R}^{**} is an equivalence. To show that \mathcal{R}^{**} is compatible, let $(a,b) \in \mathcal{R}^{**}$ for $a, b \in S$. Then $a^+ = b^+$ by Lemma 1.1. Suppose that $(xac, yac) \in \mathcal{L}$ for any $x, y \in S^1$ and any $c \in S$. Since $(c, c^+) \in \mathcal{R}^{**}$, it follows that $(xac^+, yac^+) \in \mathcal{L}$. But $(xac^+, yac^+) = (xa^+ac^+, ya^+ac^+)$ and hence $(xa^+c^+a, ya^+c^+a) \in \mathcal{L}$. From $a^+ = b^+$ and $(a, b) \in \mathcal{R}^{**}$, we have $(xa^+c^+b, ya^+c^+b) \in \mathcal{L}$ and $(xb^+c^+b, yb^+c^+b) = (xb^+bc^+, yb^+bc^+) = (xbc^+, ybc^+) \in \mathcal{L}$. Again, from $(c, c^+) \in \mathcal{R}^{**}$, we have $(xbc, ybc) \in \mathcal{L}$.

Similarly, we can show that $(xbc, ybc) \in \mathcal{L}$ implies $(xac, yac) \in \mathcal{L}$. Hence, $(ac, bc) \in \mathcal{R}^{**}$. This shows that \mathcal{R}^{**} is a right congruence on S.

Suppose that $(xca, yca) \in \mathcal{L}$. Since $(a, b) \in \mathcal{R}^{**}$, we obtain that $(xcb, ycb) \in \mathcal{L}$ and so \mathcal{R}^{**} is a left congruence on S. Thus, we have proved that \mathcal{R}^{**} is a congruence on S.

Lemma 1.3 Suppose that S is a right-e wlpp semigroup. Then $(ab)^+ = a^+b^+$ for all $a, b \in S$.

Proof. Let S be a right-e why semigroup. we have $(a, a^+) \in \mathcal{R}^{**}$ and $(b, b^+) \in \mathcal{R}^{**}$. Then, by Lemma 1.2, $(ab, a^+b^+) \in \mathcal{R}^{**}$ for all $a, b \in S$ since \mathcal{R}^{**} is a congruence on S. Thus $(ab)^+ = a^+b^+$ by Lemma 1.1.

Let S be a right-e when semigroup. For all $a, b \in S$, we define a relation ρ by $a\rho b$ if and only if a = fb for some $f \in E(b^+)$, where $E(b^+)$ is a rectangular band containing idempotent b^+ .

Lemma 1.4 Let S be a right-e wlpp semigroup and ρ be the above relation defined on S. Then ρ is a congruence on S.

Proof. We now claim that ρ is an equivalent relation. Clearly, ρ is reflexive and symmetric. To show that ρ is transitive, we first prove that if $a\rho b$, then $E(a^+) = E(b^+)$ for any $a, b \in S$.